The Champalimaud Centre for the Unknown integrates research and clinical operations, under Champalimaud Research and the Champalimaud Clinical Centre (respectively), with the objective of developing cutting edge research side by side with excellent patient care.

The goal of Champalimaud Research (CR) is to perform world-leading fundamental and translational research. Current research work is focused on the fields of neuroscience, physiology and cancer.

As of 2019, CR hosts three programmes that explore the core research areas of the Foundation:
- Champalimaud Neuroscience Programme
- Champalimaud Physiology and Cancer Programme
- Champalimaud Experimental Clinical Research Programme

A Research Direction Team was appointed to coordinate this endeavour. It is comprised of three scientific directors representing the three programmes: Joe Paton, Henrique Veiga-Fernandes and Celso Matos. Together, the team will carry out the scientific aim of the Champalimaud Foundation: to explore new avenues of investigation, while reinforcing the links between research and clinical activities.
<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Foundation</td>
<td>06</td>
</tr>
<tr>
<td>Structure</td>
<td>08</td>
</tr>
<tr>
<td>Growth & Diversity</td>
<td>10</td>
</tr>
<tr>
<td>Research Labs</td>
<td>14</td>
</tr>
<tr>
<td>Research Associates</td>
<td>70</td>
</tr>
<tr>
<td>Adjunct Labs</td>
<td>72</td>
</tr>
<tr>
<td>Publications</td>
<td>74</td>
</tr>
<tr>
<td>Competitive External Funding</td>
<td>80</td>
</tr>
<tr>
<td>Education</td>
<td>84</td>
</tr>
<tr>
<td>Events</td>
<td>90</td>
</tr>
<tr>
<td>Culture</td>
<td>96</td>
</tr>
<tr>
<td>Scicom & Outreach</td>
<td>100</td>
</tr>
<tr>
<td>Support Units</td>
<td>108</td>
</tr>
<tr>
<td>Sci & Tech Platforms</td>
<td>114</td>
</tr>
<tr>
<td>The Nitty Gritty</td>
<td>123</td>
</tr>
</tbody>
</table>
Through scientific breakthroughs and clinical developments, the Champalimaud Foundation is there to help those who need it most.

The Champalimaud Foundation exists as the legacy of Portuguese entrepreneur and industrialist, the late António de Sommer Champalimaud. It was formally created in 2005 under the full title: Anna de Sommer Champalimaud and Dr. Carlos Montez Champalimaud Foundation. Thus, honouring the benefactor’s parents, with Leonor Beleza as President, as set out in the will of António Champalimaud. The Foundation gives full backing to its researchers who work on the frontline of science and biomedicine. Its scientists and doctors use their creativity, experience and talents to find new and innovative ways to approach the many questions of modern neuroscience and oncology.

In September 2018, during the António Champalimaud Vision Award ceremony, the Champalimaud Foundation announced the creation of the first pancreas cancer research and treatment centre in the world. Maurício Botton Carasso and his wife, Charlotte Botton, decided to work with the Champalimaud Foundation, contributing 50 million euros to build an innovative facility where scientists, doctors and physician-scientists can work together to advance knowledge, take control and fight the hitherto irreducible character of a disease that has defied science for decades.
Structure

Champalimaud Research

Direction Team
Celso Matos, Henrique Veiga-Fernandes, Joe Paton

Research Groups

Experimental Clinical Research
Mireia Castillo
Durval Costa
Rita Fior
Cristina João
Markus Maeurer
Albino Oliveira-Maia
Nickolas Papanikolaou
Noam Shemesh

Physiology & Cancer
Bruno Costa-Silva
Adriana Sánchez Dánes
Eduardo Moreno
Christa Rhiner
Henrique Veiga-Fernandes

Neuroscience
Megan Carey
Eugenia Chiappe
Rui Costa
Gonzalo de Polavieja
Susana Lima
Christian Machens
Zachary Mainen
Marta Maita
Michael Orger
Joe Paton
Leopoldo Petreanu
Alfonso Renart
Carlos Ribeiro
Maria Luisa Vasconcelos

CR SAB *
Regular members
J. Anthony Movshon
Martin Raff

2019 members
Gilles Laurent
Michael Shadlen
Rainer Friedrich
Thomas Clandinin
Yang Dan

Support Units
Direction Support
Events
Human Resources & Fellows
Support Office
Lab Administration
Pre-award
Post-award

Scientific & Technological Platforms
Fish
Flow Cytometry
Fly
Glasswash & Media Preparation
Histopathology
Microscopy
Molecular & Transgenic Tools
Rodent
Scientific Hardware
Scientific Software

Science Communication
Institutional communication
Outreach

Education
Direction
Coordination
Teaching Lab
Education & Courses

Graduate Programme SAB *
Carlos Belmonte
Gilles Laurent
Alessandro Treves

* The Scientific Advisory Board consist of external scientists who provide helpful guidance to CR Programmes and Research Groups.
Growth and diversity

The CR grew by nearly 100 new members since last year! This increase was the result of the association of clinical research groups, previously solely affiliated with the Champalimaud Clinical Centre, to CR.

By maintaining their links with the clinic, while establishing new ones with the fundamental research department, the new Experimental and Clinical Research Programme is well poised to pursue its goals in the field of translational research.

CR MEMBERS

- 65.5% PORTUGUESE
- 34.5% NON PORTUGUESE

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postdocs</td>
<td>108</td>
</tr>
<tr>
<td>PhD Students</td>
<td>98</td>
</tr>
<tr>
<td>Research Technicians</td>
<td>84</td>
</tr>
<tr>
<td>Platforms</td>
<td>58</td>
</tr>
<tr>
<td>MSc Students</td>
<td>53</td>
</tr>
<tr>
<td>Admin</td>
<td>40</td>
</tr>
<tr>
<td>PIs</td>
<td>26</td>
</tr>
</tbody>
</table>

467 CR MEMBERS

59% Female
41% Male

35 NATIONALITIES

Angola
Argentina
Australia
Austria
Belgium
Brazil
Canada
Cape Verde
Chile
Colombia
Croatia
Ecuador
Finland
France
Germany
Greece
India
Israel
Italy
Jamaica
Japan
Lesotho
Mauritius
Norway
Philippines
Poland
Portugal
Romania
Spain
Switzerland
The Netherlands
Turkey
United Kingdom
United States of America
Venezuela
Exploring new avenues of investigation, while reinforcing the links between research and clinical activities.

<table>
<thead>
<tr>
<th>Research Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>△</td>
</tr>
<tr>
<td>Neuroscience</td>
</tr>
<tr>
<td>Physiology & Cancer</td>
</tr>
<tr>
<td>Experimental & Clinical Research</td>
</tr>
</tbody>
</table>
A cell-attached in vivo electrophysiological recording from a mouse cerebellar Purkinje cell reveals two kinds of action potentials: frequent simple spikes, and the occasional ‘complex spike’ (marked with an *) that gives rise to large increases in postsynaptic calcium.

Credit: Jorge Ramirez, Carey lab

careylab.org

The Neural Circuits and Behaviour lab studies the cerebellum, a brain area that is critical for coordinated motor control and motor learning. The well-described cerebellar circuit is conserved across species, which enables the researchers to study it in mice, a powerful animal model that offers an array of genetic tools for measuring and manipulating activity in specific populations of neurons. In some cases, these manipulations mirror neural conditions that exist in humans who suffer damage to the cerebellum through illness or injury.

In 2019, the lab published an innovative study, where they reported remarkable similarities between the way humans and mice learn to adapt their manner of walking. In addition, in that same study, the researchers identified a site in the brain that controls the two components crucial for mastering this task – space and time.

Several exciting things happened in 2019. Among these, I would highlight a couple of events. The first is publishing a new research article in the journal Neuron, where we reported striking similarities between human and mouse locomotor learning and localised a brain area that controls the temporal and spatial components of walking.

Another highlight was Chairing the 2019 Gordon Research Conference on the Cerebellum, a top conference in our field, which took place in Switzerland in July.

Finally, my lab received a Consolidator Grant from the European Research Council (ERC). This generous grant will allow us to continue investigating how the activity of neurons throughout the brain produces learned and coordinated movements.
Using data obtained from an Electron Microscope, we have identified and reconstructed a small network contributing to head-body coordination during locomotion. The network is highly recurrent, and contains critical interneurons (IPSIN) that connect to premotor (LAL_PN) and visual (Me_PN and LP_PN) areas of the fly brain, as well as to neck and ventral nerve cord circuits (the spinal cord of insects).

Using data obtained from an Electron Microscope, we have identified and reconstructed a small network contributing to head-body coordination during locomotion. The network is highly recurrent, and contains critical interneurons (IPSIN) that connect to premotor (LAL_PN) and visual (Me_PN and LP_PN) areas of the fly brain, as well as to neck and ventral nerve cord circuits (the spinal cord of insects).

Postdoctoral Researchers
João Marques
Paavo Huoviala
Terufumi Fujiwara

PhD Students
André Marques
Mert Erginkaya
Miguel Paço
Nuno Rito
Tomás Cruz

MSc Student
Mara Bruhns

Research Technicians
Margarida Brotas
Nélia Varela
Salih Ece Sönmez
Sebastián Malagón Pérez
Wynne Stagnaro

Motor context coordinates visually guided walking in drosophila. Cruz, T, Fujiwara, T, Varela, N, Mohammad, F, Claridge-Chang, A, and Chiappe, ME. bioRxiv 572792. doi: https://doi.org/10.1101/572792

"In 2019, we published the results of an exciting new study in a preprint, where we identified that visual networks contribute to the stability of locomotion in a context-dependent manner. Specifically, in a context that is defined by the internal motor state and the goals of the fly. This work suggests models for how visual feedback is combined with internal signals to guide exploratory course control.

We also welcomed new researchers into the lab, three doctoral students – André Marques, Miguel Paço and Nuno Rito, and two postdocs – Paavo Huoviala and João Marques."
How the brain generates and selects actions

The Neurobiology of Action lab studies how the basal ganglia is involved in motor planning and decision making. This brain area interacts with several cortical areas, being fundamental for movement control and learning. This essential role is reflected in how dysfunctions in these brain areas result in important neural disorders such as Parkinson’s and Huntington’s disease and obsessive-compulsive disorder. By using a cross-level approach, from molecules to neural circuits, work developed in the Neurobiology of Action lab has contributed to expanding the knowledge of this field, with groundbreaking findings challenging and updating the previously held perceptions regarding the role played by basal ganglia subcircuits in movement.

"Among this year’s publications, I would like to highlight a research article published in the journal Molecular Psychiatry titled ‘Differential effects of Foxp2 disruption in distinct motor circuits’ and a perspective article published at the Annual Review of Neuroscience titled ‘What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation’.”

Data suggests that neurons in the striatum that are coactive during the same action, share inputs from the cortex. Circles with white markings represent neurons related to two different actions (dotted and solid white, respectively).

This schematic was adapted from: Klaus et al., Annu Rev Neurosci. 2019.
Applying deep attention networks as a way to model fish collective behaviour, we found that each animal has a small number of relevant neighbours out of the total number of fish in the group. Also, this number changes in time depending on the behaviour of neighbours.

Taken from Heras et al. 2019.

“In 2019, we published an AI-based tracking software called idtracker.ai, in which we adapted deep learning to better acquire behavioural data of multiple animals in groups. This software was used in another publication that came out that same year. In that study, we demonstrated that collective motion of individuals in a group can be modelled in a way that is very predictive and insightful.”

The ventromedial hypothalamus is a brain area important for integrating hormonal information and social cues. Using a viral-based strategy, we were able to identify direct inputs across the entire mouse-brain into a group of neurons that express progesterone receptors in this area. This illustration depicts positive staining (dots) in a small sample from a series of more than 100 slices, which spans the whole brain.

The Neuroethology lab focuses its efforts on understanding the mechanisms that ensure sexual behaviour is promoted when fertilization is most likely to occur and inhibited otherwise. For one, as the willingness of females to engage in sex is limited to periods of fertility, the team investigates how sex hormones modulate neural activity and behaviour throughout the female reproductive cycle. Second, the team also studies the mechanisms that ensure termination of sexual interaction in males: the post-ejaculatory refractory period.

To gain insight into how the brain controls these fundamental processes, the team works on several brain regions, but most of their efforts are centred on the medial hypothalamus, an area that is of particular importance for female sexual behaviour. In addition, in order to understand how the refractory period after ejaculation is established in the male, the lab is also investigating the spinal cord mechanisms that control ejaculation. Despite the importance of ejaculation for species maintenance and well-being, very little is known about how this process is controlled.

During 2019 the lab was joined by a new postdoctoral fellow, Jonathan Cook. Jonathan completed his PhD at the Salk Institute under the guidance of Ed Callaway and Xin Jin where he investigated how action timing is implemented in the brain. During his stay at the Neuroethology lab he is going to investigate the role of the medial preoptic nucleus for the execution of sexual behaviour. For this, Jonathan will record the neuronal activity of hypothalamic neurons in behaving animals in order to understand how activity within this area can support the proper execution of this behaviour.
Unlike man-made machines, biological systems such as the brain are robust to many perturbations and even their partial destruction. Shown here is a simulation of a neural network that maintains its functionality – generating an oscillation – despite the death of neurons, increased levels of voltage noise, perturbations of synaptic connections, etc.

Formulating computational theories of brain function and animal behavior

To develop models of information processing in the brain, the Theoretical Neuroscience lab uses mathematical analysis and numerical simulations. These tools allow the researchers to formulate their ideas and intuitions in a precise manner and thereby put them to test using real data. Specifically, the team focuses on several ‘higher-order’ regions such as the frontal cortices that are involved in turning sensory information into decisions.

The team is comparing experimental data across different species and brain areas in order to find common principles of how information is being represented in the brain. The team also engages in the development of new methods to summarise the activity of neural populations in useful ways and to compare population activity across areas. They work in close collaboration with several experimental labs, both within and outside of the Champalimaud Centre for the Unknown.

“In 2019, I had the privilege of co-organising the most important conference in the field of theoretical neuroscience – Cosyne, which was held in Lisbon for the first time this year.

The thesis work of João Semedo, a former doctoral student in the lab who graduated in 2018, was published in the journal Neuron in April. Several months later, Nuno Calaim, another doctoral student, defended his PhD thesis titled ‘Robustness of spike coding networks’.”

Experiments in cognitive science using human subjects rely on first-person experience, even if they try to reduce its inherent subjectivity by operationalising it with more objective third-person methods (EEG, pupill dilation, etc.). Still, experiments depend on the reports through which subjects, acting as sensors, intentionally communicate their experience to the experimenter. Rigato, Rennie and Mainen argue that the importance of these reports, which they name second-person methods, should be acknowledged.

Until recently, most research on cognitive phenomena, such as perception and decision-making was done mainly in human and non-human primates. Together with a handful of colleagues, Mainen, head of the System Neuroscience lab, has helped to show that rodents, in fact, share many of primates’ cognitive abilities. Indeed, in 2008, his lab was the first to discover neural activity that reflected decision confidence in any species, a feat that was done in rats.

Though research projects with human subjects have more recently started in the lab, this approach still dominates the Systems Neuroscience lab today, where rodents are the stars, allowing the use of advanced genetic and molecular tools not available in humans and non-human primates. Using these tools, the team is able to combine multiple techniques, which allow them to record and manipulate the neural circuits that control confidence and decision-making in relevant brain regions, such as the cortex and the midbrain. The team places a major focus on the midbrain serotonin system, which they believe to play a key role, along with other neuromodulators, in regulating learning and decision-making. Theory and modelling are also a vital component of the work done in the lab because of the inherent complexity involved.

The members of the Systems Neuroscience lab are a diverse group, with backgrounds ranging from biology to mathematics, engineering and even philosophy. Lab members also count on collaborations with many groups at the CR.

“In 2019, the Wellcome Trust awarded the International Brain Laboratory (IBL) 10 Million GBP. These generous funds will support IBL in its effort to understand brainwide circuits for complex behaviour. The consortium counts with 21 labs around the world, including ours. We are looking forward to the next phase of this challenging and exciting endeavour.”
Defensive and social behaviour

Once a threat is detected animals need to choose the appropriate action. While the action displayed by an animal depends on several factors, there is little understanding of how the choice between different defence strategies is made. For example, the existence of a refuge nearby may dictate the escape strategy deployed by the prey. Another factor that plays a crucial role in regulating defensive responses is the social environment. For instance, many times defensive behaviours are carried out at the level of the population, such as shoaling in fish. Once a defensive behaviour is selected a number of physiological changes implement its execution, from changes in muscle activity to changes in heart rate and mobilization of energy.

To address the question of the neural mechanisms of defence against an external threat, the Behavioural Neuroscience lab uses the fruit fly as a model system. It’s amenable to the search for the neural mechanism of behaviour, and it allows the study of the behaviour of large groups of individuals. This is the ideal model system due to its large collection of powerful genetic tools, a rapidly increasing number of approaches to study neural circuits, and an expanding set of behavioural paradigms. Therefore, the team is developing assays to dissect the mechanisms of choice and implementation of defensive responses in Drosophila.

“In 2019 the results of one of the projects of the lab were published in a preprint. In this study, we investigated which factors influence the response of animals to social cues that communicate the existence of a threat, such as the freezing behaviour displayed by other individuals. We demonstrated that personal experience significantly influences the response displayed by an individual to social cues. We believe that this insight provides a framework to study how the neural circuits involved in the self-experience of defensive behaviours overlap with the ones involved in socially triggered defensive behaviours.”

Freezing displayed by others is a learned cue of danger resulting from co-experiencing own-freezing and shock. Andreia Cruz, Mirjam Heinemans, Cristina Marquez, Marta A. Moita

doi: https://doi.org/10.1101/800714

Models

<table>
<thead>
<tr>
<th>Rat</th>
<th>Fruit fly</th>
</tr>
</thead>
</table>

Brain Regions

- Amygdala
- Auditory thalamus
- Cortex

Research Methods

- Development of behavioural tasks
- Genetics
- Optogenetics
- Physiology to study neuronal circuits

Postdoctoral Researchers
- Andreia Cruz
- Anna Hobbiss (Co-Sup with Cesar Mendes, CEDOC)
- Clara Ferreira
- Natalia Barrios
- Ricardo Neto Silva
- Ricardo Zacarias

PhD Students
- Matheus Farias
- Mirjam Heinemans

Research Technicians
- Catarina Mendes (MSc student)
- Sofia Silva (MSc student and Fly platform tech)
- Rui Gonçalves

In this experiment, the freezing response of a group of flies to a threatening stimulus (an expanding dark circle) was tested. The more threatening events happened, the longer the flies took to move again. This pattern suggests that the level of activity reflects the level of safety. Specifically, in groups, the movement of others can constitute a cue of safety leading to further activity. This schematic illustrates the experimental setup, and how the motion signal is calculated.

fchampalimaud.org/researchfc/groups/grupo-behavioral-neuroscience
Determine the principles on which sensorimotor circuits are organised and reveal how activity dynamics unfold throughout the whole brain during behaviour.

Responses of zebrafish larvae to lateral line inputs depend on social experience. Each line shows the trajectory of a swim bout in response to a water vibration. Each line type (smooth, dotted, etc.) represents a different kinematic category.

Postdoctoral Researchers
Adrien Jouary (Co-Sup with Christian Machens)
Raoquel Jacinto
Sabine Renninger

PhD Students
Antonia Gromeberg (Co-Sup with Gonzalo de Polavieja)
António Lucas Martins
Elena Hindinger
Jens Bierfeld
Joaquim Conradoças
Rita Félix (Co-Sup with Megan Carey)

MSc Student
Pedro Tomás Silva

Senior Technicians
Aaron Ostrovsky
Edite Figueiras

Research Technicians
Adinda Wens
Alexandre Labarde
Bernardo Esteves
Rita Esteves
Sofia Freitas
Lucas Soares

Intern
Elisa Morbiato

The Vision to Action lab uses a combination of advanced optical, genetic and behavioural methods in zebrafish. In recent years, zebrafish have emerged as an attractive model system, as they exhibit a robust set of instinctive visually guided behaviours, while their brain, which follows a typical vertebrate pattern, is sufficiently small and transparent so that researchers can non-invasively image the activity of each of its neurons. Specifically, the team visualises changes in levels of calcium ions, a marker of neural activity, while performing high-speed behavioural tracking to make a detailed, quantitative analysis of visually-evoked swimming and eye movements. In addition, the team develops genetic tools in order to probe and manipulate defined circuit elements with high specificity.

Recently, the team has developed a high-speed, real-time tracking system that has allowed them to systematically characterise the swimming behaviour of zebrafish larvae in response to a variety of different stimuli. Using a computational approach to behaviour classification, called unsupervised machine learning, they have identified a core set of swimming movements and demonstrated how they are used flexibly across different behaviours.

“Along with 12 other researchers across Europe, we secured funding for the Zebrafish Neuroscience International Training Hub (Zenith). The aim of ZENITH is to train a new generation of neuroscientists in cutting-edge approaches that bridge biology, physics and mathematics to uncover the mysteries of brain formation and function. The ZENITH PhD program will train 15 students, hosted by 13 laboratories, who will undertake collaborative projects that address major questions in neuroscience.”
Learning, decision-making and cognition

The Learning lab studies how information about dynamic, internal variables can be encoded across networks of neurons and how that information is transformed by the circuitry of the basal ganglia into adaptive behaviour. One of the lab’s contributions to the field was the discovery that information about elapsed time can be encoded in a wave-like activity pattern that travels across populations of neurons within a brain region called the striatum. An additional discovery made by the lab showed that subjective time perception can be directly controlled by manipulating the activity of dopamine neurons within a brain structure called the substantia nigra in mice. The loss of these neurons is the major contributing factor to symptoms of Parkinson’s disease, a condition which is known to be associated with impaired timing capabilities in patients.

Other projects in the lab target genetically and anatomically targeted cell types across the basal ganglia, thalamus and frontal areas of the cortex. These frontal areas specifically are optimal sites for studying timing behaviour as they are known to be associated with impaired timing capabilities in patients.

“In 2019 we completed a study where we detailed how the two main projection cell types in the striatum contribute to distinct aspects of motor control and action selection. Specifically, using a combination of calcium imaging and optogenetic manipulations during a carefully designed behavioural task, we found that indirect pathway projection neurons are activated by and necessary for the proactive suppression of specific actions. These neurons are preferentially lost in the early stages of Huntington’s disease, wherein patients exhibit uncontrolled movements called chorea. In contrast, we found that direct pathway neurons were not activated by action suppression and inhibiting them had no effect on action suppression or selection, but rather disrupted the vigor with which actions were produced. Another major neurological disorder of the basal ganglia, Parkinson’s disease, is associated with a slowing of movement called bradykinesia. Thus, our work maps distinct symptoms of neurological disorders onto specific cell types within the basal ganglia.

This study was recently published as a preprint in bioRxiv, and is currently under revision in a peer-reviewed journal.”

Schematic showing a sample of genetically modified mouse lines that label specific cell types within cortico-basal ganglia circuitry. The lab uses these mice to monitor and manipulate targeted neurons to understand how the circuit operates in the control of behaviour.
How the brain builds a representation of the environment from sensory stimuli

The Cortical Circuits lab applies a structure-to-function approach to understand the neural basis of visual perception. The researchers use optical and electrophysiological techniques to study the wiring logic of cortical circuits in areas that are required for visual perception in rodents. The team applies advanced optical methods to map the connectivity of axons that link distant areas of the neocortex with unprecedented detail. They also measure the activity of the same circuits in mice performing perceptual tasks using two-photon imaging, high-density microelectrode arrays and whole-cell recordings.

This combined approach allows the researchers to understand both the computations implemented by cortical circuits as well as how they emerge from the underlying neuronal network. They are testing to what extent conserved circuits motifs perform similar computations across the neocortex and how sensory evidence and internal factors are combined to build a coherent model of the world.

“*In 2019, we published a preprint about a study focusing on the inter-connectivity rules of neurons in the visual cortex of mice. Our results reveal distinct circuitry architecture that supports a role of these circuit elements in hierarchical recurrent computations.*

Another highlight is the graduation of Marina Fridman, a doctoral student in the lab, who successfully defended her thesis, titled: ‘Contextual modulation of visual thalamocortical circuits’.*

Laminar-specific cortico-cortical loops in mouse visual cortex. Hedi Young, Beatriz Belbut, Margarida Baeta, Leopoldo Petreanu. bioRxiv. doi: https://doi.org/10.1101/773085
Responses of neurons in the auditory cortex of a mouse performing a delayed frequency discrimination task. Although neurons in both the mid/superficial and the deep layers represent the identity of the sound during sound presentation (dotted rectangle), this information decays in time. Neurons in the deep layers represent the upcoming response of the mouse during the delay period.

The Circuit Dynamics and Computation lab is interested in identifying generic principles underlying decision making, both at an algorithmic level, and ultimately in terms of their implementation in the brain. Their current work revolves around three lines of research: (i) the neural basis of classic psychophysical regularities — which provide quantitative signatures of perceptual decisions; (ii) normative models of perceptual choice; (iii) how different aspects of the dynamics of cortical circuits — such as their overall level of synchronization or the interplay between different cortical layers — impact sensory discriminations.

The lab seeks for experimentally accessible consequences of these computational principles. Their research strategy places emphasis on exploiting manipulations and analysis of behaviour in order to specify the computations underlying a particular task. They also seek to relate these computations and the activity of neural populations recorded using large-scale electrophysiology.

“In 2019, the lab was very active in terms of dissemination. We presented our work in the Advanced School for Modeling of Behaviour (Barcelona, September), the Predictive Brain Conference (Marseille, September), the US Society for Neuroscience (Chicago, October) and the International Society for Psychophysics (Antalya, November).”
To study the neural mechanisms of nutrition, the lab uses the fruit fly, one of the most powerful and versatile genetic animal model currently available due to its long history of important contributions to medicine and our understanding of biology. The fruit fly allows researchers to combine a wide array of tools and approaches: genetic circuit manipulations, activity imaging, automated quantitative methods for studying behaviour, microbiome manipulations and tissue-specific large scale RNAi screens. Team members use these tools to implement an integrative neuroscience approach, necessary to solve this whole-organism problem.

When animals lack specific nutrients they develop a craving for food containing them. The mechanisms in the brain driving animals to choose foods with nutrients their bodies need are largely unknown. To investigate this important question, the team developed a new behavioural setup called the “optoPAD” with which they can create “virtual taste realities” for flies. The flies had been genetically engineered to express light sensors in sweet or bitter cells on their “tongue”. The researchers used light to stimulate these taste neurons when the animal touched specific food patches making it believe that the food contained specific nutrients. This open-source technology opens new avenues for dissecting the brain processes driving nutrient specific cravings.

“Disseminating our work to a wider audience is an important goal for us. We were therefore extremely honored to have our work featured in an ARTE documentary on the effect of food on the brain. In ‘Eat Yourself Smart and Happy’ we join a group of experts from around the world to discuss how we use Drosophila at the Champalimaud Foundation to explore the impact of food and the microbiome on our eating decisions.”

<table>
<thead>
<tr>
<th>Models</th>
<th>Brain Regions</th>
<th>Research Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit fly</td>
<td>Whole brain</td>
<td>Neurogenetics; Optogenetics; Neuroanatomy; Molecular biochemistry; Nutritional & microbial manipulations; Behaviour</td>
</tr>
</tbody>
</table>

optoPAD combines advanced optical and genetic techniques with touch-screen technology to monitor and control feeding behaviours and taste sensations in fruit flies. This schematic shows the “optoPAD” system, which is based on the use of closed-loop capacitance measurement of feeding, with optogenetic manipulation of neurons in behaving flies. The interaction of the fly with the food source triggers the activation of the LED, which controls the activity of specific neurons in the brain of the fly.

The image was adapted from: Moreira et al. 2019.

ribeirolab.org
To dig down into the neural circuitry of innate behaviour, the Innate Behaviour lab focuses on two main behaviours – the relatively simple avoidance of a repulsive odour and the more intricate courtship behaviour. Both behaviours are studied in the fruit fly *Drosophila melanogaster*, a powerful model system that offers a wide range of advanced techniques. These include genetic manipulations to help identify which neurons are involved in specific behaviours, optogenetic tools to monitor the activity of neurons, and highly detailed video monitoring to establish the most precise relationship between behaviour and neural activity.

Using this combined approach, the team was able to establish a direct link between neural activity and behaviour, when they discovered a group of neurons (called apterous neurons) that have direct control over sexual receptivity in female flies. When the researchers silenced these particular neurons, females significantly reduced their receptivity towards males. Besides, they were able to pinpoint a specific behavioural hallmark that was affected – the walking pace of the female. Together, these results represent an important step towards gaining a better understanding of the neural mechanisms that control female receptivity. For the next step, the team is trying to pin down the neural circuitry these neurons tap into to find out how they exact this powerful effect on the behaviour of the female.

"In 2019 we published our work demonstrating that the lateral horn mediates innate olfactory responses. We used a behavioural experiment in which fruit flies avoid carbon dioxide to test the involvement in this response of different neurons in the lateral horn. We found that two sets of neurons mediate carbon dioxide response. These neurons do not mediate the avoidance response to other aversive odors tested, indicating selectivity for carbon dioxide."

We showed the application of a new technology to the follow-up of the response of pancreatic cancer patients to chemotherapy. Reduction in the plasma levels of specific extracellular vesicles populations identified in our lab were linked to positive responses to therapy, while increment of these populations correlated with loss of response. This illustration depicts the characteristic data obtained with this method.

How the exchange of extracellular vesicles, a natural form of communication in the body, can be utilized by cancerous tumours for growth and metastasis

The general interest of the Systems Oncology lab is to understand how the crosstalk between tumour cells and non-tumour cells supports or prevents oncologic disease. Specifically, the lab studies how the exchange of extracellular vesicles, a natural form of communication in the body, can be utilised by cancerous tumours for growth and metastasis. Recent results from the team have shown not only that these vesicles are different in cancer patients, but also that they can activate healthy cells at remote locations to support tumour metastasis.

Following these results, the lab currently focuses on developing animal models of tumour initiation, progression and metastasis, in combination with the characterisation of extracellular vesicles isolated from tumour cell lineages and oncologic patients with diverse clinical profiles. By using this approach, the lab aims to gain a mechanistic understanding of this form of communication with the end goal of developing tools for early detection, follow-up and treatment of cancer.

“The Flow Cytometry strategy developed in our group enables detailed population analysis of extracellular vesicles. When compared to conventional methods, it decreases sample volume requirements while substantially reducing the overall processing time. By doing so, it multiplies by hundreds of times the number of different analytes that can be studied from a single collection of biofluid.”
The mechanisms by which cells of multicellular animals perform fitness detection and selection of neighbouring cells

The group studies the mechanisms of cell competition in processes such as ageing, development, tissue regeneration and cancer. Work from the team has provided significant insight into these mechanisms, including the identification of "fitness fingerprints", a molecular code used by cells to exhibit their fitness level. According to their findings, fitness fingerprints allow neighbouring cells to recognize and eliminate less-fit cells. The team showed that this process happens during ageing, regeneration and cancer. Specifically, they found that fitness-based cell selection could be manipulated to delay ageing and tissue fitness decay as well as to prevent the expansion of cancer (cancer cells often exhibit themselves as "superfit" cells, which leads to the elimination of healthy cells around them). A new type of competition was discovered and named "mechanical competition" in which a high density of cells leads to compression of tissue and thereby to cell elimination. They are currently in the process of testing whether mechanical competition is important for tumour expansion into healthy tissue.

Work in the lab is done in the fruit fly animal model, where they apply advanced genetic techniques to manipulate the functions of genes related to cell fitness, in combination with microscopy and live imaging. The team studies epithelial tissue, which is known to give rise to 95% of cancer types, including breast, lung and skin cancer. They also study the role of fitness-based cell selection among neurons during brain development, neurodegeneration and brain ageing. Also, they have recently started studying the conservation of the process in human cells and mouse models.

"During 2019 my team and I have found new pathways regulated by mechanical forces (Moreno et al., Curr. Biol. 2019) and the role of fitness fingerprints in human cancer (Madan et al., Nature, 2019). Our results show that ancient mechanisms of cell recognition and selection are active in humans and affect oncogenic growth. The Madan et al. study was selected as one of the best discoveries of the year by the European Association of Cancer Research (EACR)."

This schematic shows a phase in a programme that drives neural stem cell activation upon brain injury. In this phase, we isolated regenerating cells after traumatic brain injury from dissociated adult fly brains. In the following phase, we performed RNA sequencing to identify early signatures which can switch on dormant neural progenitor cells that are capable of forming new neurons in the damaged brain area.

How adult stem cells can switch from being dormant to actively dividing in situations relevant for tumour formation or tissue regeneration after injury

The Stem Cells and Regeneration lab is interested in isolating the factors that bring about the activation of adult stem cells during tissue regeneration after injury or tumour formation. To that end, the team studies the molecular mechanisms through which neural stem cells are activated and produce new nerve cells in the adult brain.

The methods utilised in the lab include genetics, RNA-sequencing, high-end confocal microscopy and behavioural assays to test recovery of neural function. The team applies these methods in the adult fruit fly brain, within a region called the optic lobe.

Recent work from the lab has resulted in the discovery of damage-responsive stem cells in this area and the identification of several candidate genes that are thought to underlie this process. Currently, the team is characterising these genes while concurrently working on identifying other brain regions that are able to regenerate. Ultimately, the team’s discoveries may lead to new therapies to facilitate tissue repair, such as brain regeneration after stroke, and preventing dysregulated stem cell proliferation that may lead to tumour formation.

“In 2019 we set-up and optimized the procedures to isolate small populations (200-300 cells) of dividing cells from the adult fly brain, which gives us access to the gene expression profiles of rare stem cell population and their progeny at the population and single cell level. The crucial points in the workflow consist in preparing a single cell suspension of intact neurons, glia and other cells from freshly dissected and dissociated brains and sort the cells by in house Flow Cytometry within a short time to obtain native expression patterns.”
Understand the mechanisms involved in pediatric and adult cancer progression

Most tumours are heterogeneous at the cellular and (epi)genetic levels. This heterogeneity has been proposed to be responsible for tumour progression, metastasis and resistance to therapy. The goal of the Cancer and Stem Cell Biology Lab is to understand the contribution of the different tumour cell populations and genetic alterations to cancer progression and response to therapy.

The team pursues this goal by combining genetic lineage tracing, clonal analysis, imaging techniques, tumour organoid cultures and functional experiments in vivo and in vitro. Specifically, the researchers use the most frequent human cancer – basal cell carcinoma – and one of the most common pediatric cancers – medulloblastoma – as the models for their studies.

"I was delighted to integrate my lab in the Champalimaud Physiology and Cancer Research Programme in late 2019 (via the ERA Chair project QuantOCancer) and look forward to showcasing our research and building collaborations. New lab members – technicians and postdocs – will be joining the lab in February 2020. Welcome!"

Models	**Region of Interest**	**Research Methods**
Rodent Human | Skin Brain | Clonal analysis; Transcriptomics; Genetic mouse models of cancer; Organoids and imaging techniques

This illustration represents basal cell carcinoma tumours (black) in the skin. These tumours can arise upon the deletion of the Ptc1 gene.

[Link to the research group page](fchampalimaud.org/researchfc/groups/grupo-cancer-and-stem-cell-biology)
The role of cross-talk between neurons of the peripheral nervous system and the immune system in the prevention and resolution of disease

The Immunophysiology lab explores the role of cross-talk between neurons and the immune system in the prevention and resolution of disease. To that end, the team mainly focuses on mucosal barriers, such as the intestine and the lung. These organs are in permanent contact with the external environment and have a complex and dense network of neuronal and immune cells. This combination of features makes these organs an optimal site to reveal how the neural and immune systems work together to preserve health.

Using this approach, the lab has recently revealed a surprising role of the neural network that surrounds these organs: immune regulation. The team discovered that while the immune system is the one that actively fights infection, the neurons are the ones that are in charge of detecting the invasion and setting the immune response in motion. These findings may have tremendous potential in the design of novel therapeutic approaches to disease as they pinpoint new selective targets that can be harnessed in allergy, inflammation, obesity and cancer.

“We found that circadian-controlled neuroimmune circuits operate at an organismal level to regulate the function of group 3 innate lymphoid cells (ILC3s), shaping intestinal health and lipid metabolism, in mice. Our findings shed light into how environmental cues, such as light/dark cycles, impact on immune cell function and tissue physiology.”

Identification of molecular signatures in neoplastic cells and characterization of immune infiltrates in different carcinomas with the aim to develop novel therapeutic options

The Molecular and Experimental Pathology Lab has the main goal of studying tissue specimens by using state-of-the-art technologies. On one side, the research focus is the characterisation of specific molecular signatures in human cancer tissue specimens by combining genomic and phenotypic information, merging tumour mutational status with multispectral immunofluorescence expression results. On the other side, the team aims to study the immune cells in the tumour microenvironment in order to understand the mechanisms of immunescape and to develop novel therapeutic approaches to overcome it. We have recently developed a new method for 3D imaging analyses of thick tissue specimens with the idea of improving the knowledge of spatial distribution of tumour cells and surrounding microenvironment.

“During this last year I have established different collaborations with other basic investigators inside the Champalimaud Centre for the Unknown and from other countries to develop novel multiplex immunofluorescence panels to be analysed with the multispectral microscope.

We have also worked on the improvement of immunostaining and clearing techniques of formalin-fixed paraffin embedded (FFPE) tissue blocks, in order to produce 3D images of human pancreatic ductal adenocarcinoma specimens. Put together, these two methodologies may completely change the way we look at tissue specimens opening new insights in histopathology analyses.

At the end of 2019, we have submitted the study of Andreia Maia’s master thesis for publication and it will be published soon in Clinical Cancer Research. In this manuscript we describe the importance of ΔNp63 and AGR2 in the progression of non-muscle invasive bladder cancer and their clinical implications.”

An illustrative representation of a 3D image of human pancreatic intraepithelial neoplasia (upper-right) and adjacent ductal adenocarcinoma (left) from a representative Formalin-fixed paraffin-embedded tissue block. Areas rich in molecules characteristic of tumour cells (CK19 and AGR2) are represented by circles and bars (respectively). Areas of overlap are represented by squares.

fchampalimaud.org/researchfc/groups/grupo-molecularexperimentalpathology
PD-L1 is a molecule that is present in some populations of tumour cells and has been the target of certain immunotherapy treatments. This diagram outlines the labelling of an anti-PD-L1 antibody with a radionuclide. This radiopharmaceutical will allow whole-body in-vivo assessment of tumour PD-L1 expression. When its development is complete, it will help determine which patients are more likely to respond favourably to certain types of immunotherapy treatment.

The clinical use of radiopharmaceuticals for SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) is based on the pharmacodynamics and pharmacokinetics properties of radionuclide labelled molecules. The cellular and sub-cellular specific binding of radiopharmaceuticals helps in the diagnosis and therapy of several diseases by identifying the functional abnormality within tissues and cells.

SPECT and PET imaging processing and analysis are crucial to obtain meaningful and quantitative data to classify disease stages and assess response to therapy regimens. The Radiopharmacology team is dedicated to developing and using new radiopharmaceuticals, to improving radiation dosimetry incumbent to the use of internal radiation sources, and to improve processing and analysis by developing software to classify and quantify disease due to cellular functional abnormalities.

The Radiopharmacology lab is linked to all the ongoing activities within the Nuclear Medicine clinical service. For that reason, we call ourselves “Nuclear Medicine–Radiopharmacology”. Our ultimate aim is to provide a diagnostic and therapy service of excellence and try to organise research and new developments related to the use of radiopharmaceuticals. We cooperate with other departments at CF as well as with external institutions to pursue our goals. So far, during the 8 years in which the lab has been running, we have been successful in securing more than 2M€ of research-grant funds.

Our latest achievement is the successful grant application under the COMPETE PORTUGAL 2020 funding scheme. The goal of the project is to develop methods to better analyse, classify and quantify PET/CT with radiopharmaceutical data, to ultimately improve diagnosis of patients with Lymphoma and their response to treatment. The project started in August 2019 and will end in July 2022.

"The Radiopharmacology lab is linked to all the ongoing activities within the Nuclear Medicine clinical service. For that reason, we call ourselves “Nuclear Medicine–Radiopharmacology”. Our ultimate aim is to provide a diagnostic and therapy service of excellence and try to organise research and new developments related to the use of radiopharmaceuticals. We cooperate with other departments at CF as well as with external institutions to pursue our goals. So far, during the 8 years in which the lab has been running, we have been successful in securing more than 2M€ of research-grant funds.

Our latest achievement is the successful grant application under the COMPETE PORTUGAL 2020 funding scheme. The goal of the project is to develop methods to better analyse, classify and quantify PET/CT with radiopharmaceutical data, to ultimately improve diagnosis of patients with Lymphoma and their response to treatment. The project started in August 2019 and will end in July 2022."
Cancer Development & Innate Immune Evasion

Rita Fior

Models	Region of Interest	Research Methods
Zebrafish | Whole body | Zebrafish xenografts; Cell biology; Molecular biology

Lab Manager
Bruna Costa

Postdoctoral Researchers
Marta Estrada
Raquel Mendes

PhD Students
Mayra Martinez
Vanda Póvoa

MSc Students
Ana Varanda
Micaela Domingues

Research Assistants
Cátia Almeida
Ana Logrado (Co-Sup with Cristina João, CR)

The Cancer Development & Innate Immune Evasion lab pursues two main research objectives:

The first is to develop tools for personalised medicine. Despite advances in targeted cancer treatments, we still lack methods to predict how a specific cancer in a specific patient will respond to a given therapy. Consequently, patients go through rounds of trial-and-error, to find the best treatment, often subjected to unnecessary toxicity. The lab is developing a system where patient-derived tumour-samples are implanted into zebrafish larvae. These “avatars” are used as sensors for cancer behaviour and personalised therapy screening (Fior et al, 2017). Early results are very promising and the team is currently pursuing this venue of research in various cancer types.

The second goal of the lab is to study how tumours evade the immune system. To thrive, tumour cells employ mechanisms that circumvent the immune response. By combining live imaging, genetic and chemical tools, the team is studying the process of innate immune evasion and intra-tumoral clonal interactions using the zebrafish-larvae xenograft model. The researchers believe that understanding the process of innate immune rejection/evasion may lead to new avenues of anti-cancer therapies to be combined with immune-checkpoint blockers, increasing efficacy rates and taking immunotherapy to more patients.

“In 2019, I was nominated and elected member of the board of the international Zebrafish Disease Model Society. This organisation society produces regular meetings and also promotes public awareness of the zebrafish model through outreach initiatives.

Another highlight happened early in 2019, when our research was featured in the first issue of the year 2019, of the journal National Geographic. It was part of a special issue on “How personalised medicine is transforming your health cares”.

fchampalimaud.org/researchfc/groups/grupo-cancer-development-and-innate-immune-evasion
To improve the diagnosis, immunophenotypic and molecular characterization of Multiple Myeloma and Lymphoma

The experimental work of the Myeloma Lymphoma Research Programme includes a broad spectrum of research activity, where clinical haematologists from the Haematology-Oncology Unit and non-clinical researchers from Champalimaud Research, work together to expand their knowledge of the biology of mature lymphoid neoplasms and their treatment.

Currently, we have several experimental research projects in collaboration with research groups including the Systems Oncology Group, the Computational Clinical Imaging Group and the Cancer Development and Innate Immune Evasion Group. These projects address questions such as mechanisms of progression of Multiple Myeloma, novel methods of evaluating bone disease, minimal residual disease in multiple myeloma and tailored therapy based on “in vitro” drug sensitivity evaluation.

“In 2019, our team grew and started implementing the grant we received from Fundação para a Ciência e a Tecnologia (FCT), fully establishing the lab as part of Champalimaud Research. We also established additional research collaborations. Internally, we initiated three research projects supported by internal kickstarters grants (two in collaborations with Nickolas Papanikolaou and one with Rita Fior), thereby expanding our internal relationships with other labs at CR. Externally, we established a close collaboration with Rune Matthiesen’s group at CEDOC.

Finally, I would also like to highlight communication with the scientific community. We presented our original work at the European Hematology Association meeting in Amsterdam and at the Portuguese Society of Hematology meeting in Braga.”

Models

<table>
<thead>
<tr>
<th>Region of Interest</th>
<th>Research Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Blood</td>
</tr>
<tr>
<td></td>
<td>Bone marrow</td>
</tr>
<tr>
<td></td>
<td>Secondary lymphoid tissues</td>
</tr>
</tbody>
</table>

Postdoctoral Researcher
Emilie Arnault Carneiro

PhD Students
Bruna Ferreira
Joana Caetano

MSc Student
Carolina Pestana

Research Technicians
Filipa Barahona
Raquel Lopes

Allied Clinical Team
Paulo Lúcio, MD PhD
Manuel Neves, MD
Sónia Leocádio, MD, PhD
Student
Marisa Salgado, Nurse
Teresa Borges, Nurse
Laura Fernandes, Nurse

fchampalimaud.org/researchfc/groups/grupo-myeloma-lymphoma

Illustrative 3D representation of different immune cell populations identified in multiple myeloma using a multiparametric flow cytometry approach.
Developing methodologies for clinically relevant targeted immune recognition against cancer

The Immunotherapy / ImmunoSurgery lab is currently setting up a research and clinical structure to offer cellular treatment for cancer patients with a strong pre-clinical and clinical interaction to: (i) better understand the tumour-host relationship; (ii) map each patient’s individual mutational burden and the immunological ‘texture’ of the patient’s immune responses (‘adaptomics’); and (iii) identify biologically relevant immunological strategies for improved cellular therapy concepts in the treatment of patients with cancer.

In 2019, The Immunotherapy/Immunosurgery lab has been implementing two experimental platforms for deciphering anti-cancer immune responses and for developing biologically and clinically relevant methods. Namely: (i) micro-dissecting tissue specimens on the single cell level; and (ii) studying cell – cell interaction using ‘live microscopy’ that can monitor immune cell – tumour interaction continuously from one hour up to an entire week. These methods can be performed using matched tumour - cell line and anti-cancer directed immune cells, or even freshly isolated cancer tissue from biopsies. This approach will aid in testing which immunological strategy is most advantageous for expanding anti-tumour immune response.
To advance the understanding of neuropsychiatric disorders and their treatment

The Neuropsychiatry Unit started in 2013, as an interface between the Champalimaud Clinical Centre and the Champalimaud Neuroscience Programme. The team combines clinical care and translational research in mental and behavioural health, focusing on topics that are close to the research interests of the neuroscience branch of Champalimaud Research.

At the Neuropsychiatry Unit, psychiatrists and psychologists both deliver care at the Clinical Centre, and work with other clinical and non-clinical researchers to deepen knowledge about neuropsychiatric disorders and their treatment.

In 2019 we started the NEUROCOMP study, funded by FCT and BBRF. This study involves multimodal assessment of patients with obsessive-compulsive disorder, including clinical characterisation, behavioural tasks, neuroimaging and measurements of inflammatory and immune markers. This year we also obtained an H2020 grant from the European Commission, that will fund a Consortium proposing to use Artificial Intelligence to identify early markers of depression in patients with cancer.
Our Prostate Cancer Detection Model was based on a Convolutional Network for Classification and Detection and Transfer Learning. It was trained on approximately 30K patches of digital histopathology images (like the one illustrated above), providing very high accuracy (94.3%) for automatic detection of prostate cancer. The model was developed in collaboration with FC Pathology service (Prof. Antonio Beltran) and was the topic of the master thesis of Mrs Carolina Seabra.

fchampalimaud.org/researchfc/groups/grupo-computational-clinical-imaging-group

The current research activities of the Computational Clinical Imaging Group, focus on the application of mathematical modeling, statistics, and software development to support biomedical and clinical research, mainly in the field of medical image processing, visualisation, and analysis. The core research focus of the group is the development of clinically meaningful radiomics signature that will help clinicians on the decision making process regarding disease detection, characterisation, prediction of treatment response and prognostication of clinical outcomes.

“The CCIG has extended the International Radiomics Network by signing new members to the network from France, Austria, Italy, Greece and Sweden acting as a hub, providing radiomics modeling expertise to common projects in the fields of breast cancer, pancreatic cancer, and brain tumours. The network today comprises well known academic hospitals like Huddinge Karolinska in Stockholm, Sweden, Hopital Beujon in Paris, France, Institute Europeo di Oncologia in Milan, Italy and AKH in Vienna, Austria. I was elected as Fellow in the International Cancer Imaging Society and was assigned to organize a single day hands-on workshop for Radiomics starting from the fall of 2020. As a recognition of the expertise of CCIG, I was invited to be the section editor on AI, Radiomics and Machine Learning at the official journal of ICIS, which is Cancer Imaging.”
Advanced Magnetic Resonance at ultrahigh field for fundamental and translational research in neurobiology and cancer

fMRI is a non-invasive, powerful tool for studying various neuroscience and biomedical questions. Current fMRI methods work by performing indirect measures of neural activity by following accompanying changes in blood volume and oxygenation level. However, changes in blood flow, in addition to being an indirect measure, occur over a timescale of seconds, while neural activity occurs within a fraction of a single second.

This difference in time scale points out an obvious limitation of current fMRI techniques – they are too slow to resolve many important processes in the brain. To address these issues, the team’s first steps, for which they have received support from the European Research Council, have been focused on developing novel techniques that harness the power and versatility of MRI to perform direct measurements of neural activity on a much faster timescale. For instance, the team harnesses ultrahigh magnetic fields and diffusion to image the dynamics of (hypothetical) cell swellings that are known to be coupled with neural activity, as well as neurotransmitter release in the brain. These various measurements are performed in-vivo using state of the art 9.4T and 16.4T scanners, in both anaesthetized and behaving rodents.

“Two of my students secured PI positions: Jelle Veraart, who is now an assistant professor in NYU, and Madalena Fonseca who joined the University of Oxford as a senior research associate.”

This illustration depicts a precancerous lesion in a mouse pancreas observed through MRI microscopy.
Research Associates

CR’s Research Associates are senior investigators who manage independent projects in association with particular labs at CR.

Ruth Diez del Corral ▲
Development of Neural Circuits
Associated with the Vision to Action lab
Team: Mariana Viegas, MSc student

The nervous system is composed of a large variety of neuronal and glial cell types that are interconnected to create functional circuits. The connectivity of neurons is largely established during embryonic development when neurons extend projections to contact their targets. Most of the molecular mechanisms implicated in this process so far, have been identified mainly using cell cultures and their interaction and role in the context of the whole organism is still an open question.

With the use of techniques such as confocal and light-sheet microscopy for whole embryo and brain imaging together with transgenic zebrafish strains expressing fluorescent proteins in specific neuronal subpopulations, we are exploring the extension of the early neural projections in the living zebrafish embryo.

Eric DeWitt ▲
Computational Cognitive Decision Science
Associated with: Systems Neuroscience lab

Efficiently learning the costs and benefits of different behaviours is necessary for making informed choices and critical to the success of adaptive systems, both natural and artificial. Our group is interested in understanding this learning and decision making process in humans, animals, and groups using theoretical models to guide behavioural and neural experiments. Our primary research focus is on how choices are made in mammalian brains using reinforcement learning as a theoretical framework. Reinforcement learning is a general theoretical framework that describes how an animal or artificial system should (or could) solve the problem of choosing the “best” behaviour in any given situation. By comparing behaviour and neural activity to the predictions of specific reinforcement learning models, we hope to both improve the models and better understand the computations of the brain. Our group also uses neuroscience to inform and develop other computational and theoretical approaches, like deep reinforcement learning neural networks and behavioural economic models. We are now exploring group learning and decision making, leveraging the computational experimental approach used to study individual behaviour.

We believe in collaborative, cooperative science and work with many groups in Champalimaud Research as well as in other institutions worldwide.

Claudia Feierstein ▲
Neural Circuits for Visuomotor Behaviour
Associated with: the Vision to Action Lab

How does our brain use information to select appropriate behaviours? We address this question by looking at zebrafish, a small fish which at the larval stage is small and transparent, making it easy for us to peek into their brains noninvasively. Using state-of-the-art microscopes, we can then image the activity of the whole brain, while tracking their behaviour using high-speed cameras.

We can then ask: how can the larva’s behaviour, or its sensory environment, explain the neuronal activity that we measure? In the last year, in collaboration with the Machens lab, we applied analysis methods to investigate how large groups of neurons process information. In this way, we hope to understand how different circuits in the brain contribute to different processes, from sensation to selection of a behavioural response.
Adjunct Labs

In addition to research labs located at the Champalimaud Centre for the Unknown, the research team of CR also has adjunct labs, which work in complementary scientific areas.

Adam Kampff
Intelligent Systems

Affiliation: The Sainsbury Wellcome Centre, University College London

The goal of the Intelligent Systems lab is to identify the general principles of brain function that support intelligent behaviour and to implement them in machines. Specifically, they focus on how the brain constructs a representation of the environment: How is this representation learned? How is it encoded in the activity of neural networks? How is it used to control adaptive behaviour?

Rui Oliveira
Social NeuroEndocrinology

Affiliation: Instituto Superior de Psicologia Aplicada & Instituto Gulbenkian de Ciência

The main research interest of the Social NeuroEndocrinology lab is the integrative study of social behaviour that combines the study of proximate causes (gene modules, hormones, neural circuits, cognitive processes) and ultimate effects (evolutionary consequences). In particular, the team is interested in understanding how brain and behaviour can be shaped by the social environment, and how the cognitive, neural and genetic mechanisms underlying plasticity in the expression of social behaviour have evolved.

The Kampff lab is now testing novel devices for simultaneously recording from large populations of neurons throughout the brain.
Publications

CR’s publications during 2019 mirror the expanding scope of the programme. They include novel insights in fundamental research topics as well as in clinical fields. Many publications are the fruit of collaborative interactions among different groups within the Champalimaud Centre for the Unknown.
Highlights

Where is George? Ask this software to look at the crowd

A team of researchers at the Collective Behaviour lab developed a state-of-the-art tracking software called idtracker.ai. The software uses a mix of conventional algorithms and artificial intelligence to reliably track each and every individual in a moving crowd of dozens.

Zebrafish “avatars” can help decide who should receive radiotherapy treatment

To date, there is no method for clearly determining whether radiotherapy will be an effective treatment for individual cancer patients. This is a significant problem as patients may be unnecessarily subjected to potentially severe side effects. A new assay, developed by the Cancer Development and Innate Immune Evasion lab, offers a promising solution with rapid, personalised radiotherapy compatibility testing, using zebrafish as avatars.

Major breakthrough in centuries old puzzle

Weber’s law is the most firmly established rule of psychophysics — the science that relates the strength of physical stimuli to the sensations of the mind. Despite being almost 200 years old, no clear way has been found to select among its many proposed explanations. Now, scientists from the Circuit Dynamics & Computation lab have discovered a new psychophysical rule that allowed them to identify a unique and robust explanation of Weber’s law.

Outcompeting cancer

Suppressing the capacity of tumours to destroy the healthy tissue that surrounds them is essential for fighting cancer. A study by the Cell Fitness lab in human-derived tumours reveals a potential way of doing just that. The study reveals a competition mechanism used by human cancer cells for killing their neighbours and demonstrates that combining substances that block this mechanism with chemotherapy results in more effective tumour elimination. These findings may lead to the development of novel cancer therapies.

Untangling space and time in the brain

How do our brains know when and where to place our feet in order to prevent us from tripping each time we find ourselves on a new terrain such as an icy path, or a sandy beach? In an innovative study, scientists at the Neural Circuits and Behaviour lab find remarkable similarities between the way humans and mice learn to adapt their manner of walking and pinpoint a site in the brain that controls two components of physical stimuli to the sensations of the mind. Despite being almost 200 years old, no clear way has been found to select among its many proposed explanations. Now, scientists from the Circuit Dynamics & Computation lab have discovered a new psychophysical rule that allowed them to identify a unique and robust explanation of Weber’s law.

Major breakthrough in centuries old puzzle

Weber’s law is the most firmly established rule of psychophysics — the science that relates the strength of physical stimuli to the sensations of the mind. Despite being almost 200 years old, no clear way has been found to select among its many proposed explanations. Now, scientists from the Circuit Dynamics & Computation lab have discovered a new psychophysical rule that allowed them to identify a unique and robust explanation of Weber’s law.

How sleepless nights compromise the health of your gut

Why are individuals that have irregular schedules more susceptible to gut inflammation and obesity? A study by the Immunophysiology lab reveals a link between gut immune function and the brain’s circadian clock that may very well be the answer.

Solving the “Catch 22” of rectal cancer

When rectal cancer infiltrates adjacent lymph nodes, patients may have a better clinical outcome if chemotherapy or radiotherapy are administered prior to the standard surgery to remove the tumour. However, the status of these lymph nodes can only be precisely assessed upon removal during surgery.

To find a way out of this “Catch 22”, a multidisciplinary team of scientists and clinicians at the Champalimaud Centre for the Unknown, led by the Preclinical MRI lab, developed a new noninvasive MRI methodology, that is able to identify whether lymph nodes have been infiltrated by malignant cells with high accuracy. Such a characterisation can help define treatment strategy for rectal cancer patients and may have future implications for other malignancies.

In 2019, CR Researchers were awarded 12 projects & 21 individual funding schemes for the sum of €8.67M. A total of 142 external competitive funding schemes were running in CR during 2019.
The Champalimaud Research Programme has been recognised as an Excellent R&D Unit in the 2017/2018 R&D Institutional Evaluation call conducted by the Portuguese National Foundation for Science and Technology (FCT). As a result, the Programme will receive financial support from the FCT in the sum of €1.7 Million, for the period of 2020 through 2023.

Megan Carey, head of the Neural Circuits and Behaviour lab, was awarded a Consolidator Grant of €2 Million by the European Research Council. These funds will be used to further her investigation into how the activity of neurons throughout the brain produces learned and coordinated movements.

José Oliveira (Oliveira Maia lab) received a NARSAD Young Investigator Award by the Brain and Behaviour Research Foundation to pursue his research project on the influence of markers of immune dysfunction on orbitofrontal cortex recruitment during a decision-making task in obsessive-compulsive disorder.

The Champalimaud Centre for the Unknown is part of the Horizon 2020 Consortium project “Predicting Effective Adaptation to Breast Cancer to Help Women to BOUNCE Back”, as a 4th site for the clinical studies of the project. Locally, the project is coordinated by Fatima Cardoso, head of the Breast Unit at the Champalimaud Clinical Centre. Two CR groups are involved in the project – Albino Oliveira-Maia and Nikolaos Papanikolakou.

Mireia Castillo-Martin and Bruno Costa-Silva both participate in Health Research Projects funded by the la Caixa Foundation. The projects the researchers are contributing to are titled: “Eradicating prostate cancer metastasis before clinical manifestation”, and “Defining the role of exosome-secreted micropeptides in pancreatic cancer”, respectively.

Roeland Wolterink, a postdoctoral researcher at the Veiga-Fernandes lab, was awarded a prestigious fellowship by the Cancer Research Institute to study the architecture and language of pulmonary neuroimmune communication.

Five postdoctoral researchers were awarded the highly-competitive Horizon 2020 Marie Curie Individual Fellowships: David Brea López (Veiga-Fernandes lab); Julia Huntenburg (Mainen lab); Maria Martinez (Veiga-Fernandes lab); Rui Simões (Shemesh lab); and Ibrahim Tastekin (Ribeiro lab).

María López and Marko Sestan, two postdoctoral researchers at the lab of Henrique Veiga-Fernandes, received long-term fellowships by the European Molecular Biology Organization (EMBO).
Since the beginning, CR has regarded educating scientists as one of its main objectives. To this end, the CR has been dedicating considerable efforts to the development and implementation of outstanding educational programmes, advanced courses and workshops. Among these, two main endeavours are the International Neuroscience & Physiology Doctoral Programme and the CAJAL Advanced Training Courses.
The INPDP aims at providing students with a broad and integrative education in neuroscience with a focus on the neuronal and circuit basis of behaviour.

A main goal of the programme is to foster and encourage active participation, independence and critical thinking of the students. INPDP students come from all over the world and from a range of backgrounds, including the life sciences, physics, psychology, mathematics and computational sciences.

During the first year of this four-year programme, students attend courses that cover basic topics in contemporary biology and neuroscience. The courses have a strong practical component, which includes a variety of experimental preparations. During this year, students also perform laboratory rotations, which allow them to familiarise themselves with the research done in the different labs and help them with selecting the lab where they will conduct their doctoral research. Students are followed by a thesis committee which monitors their progress and provides input throughout their graduate education. The INPDP is an accredited programme and degrees are granted by one of our two academic partners, Universidade Nova de Lisboa and the Instituto Superior de Psicologia Aplicada. PhD students enjoy a vibrant academic environment at the Champalimaud Foundation, with a weekly schedule of both internal and guest seminars, as well as access to a wide range of meetings and workshops. INPDP students also have the opportunity and funding to organise their own advanced courses, as well as an annual retreat.

Joaquim Contradanças and Miguel Paço, of the INPDP class of 2017/18 received Boehringer Ingelheim Fellowships.

This prestigious fellowship is awarded to "outstanding junior scientists worldwide who wish to pursue an ambitious PhD project in basic biomedical research in an internationally leading laboratory". The students will continue to develop their research projects, while acquiring leadership and communication skills through an exclusive training programme provided by the Boehringer fellowship programme.

Class of 2019

Standing (L→R)
Rita Figueiredo
Sofia Freitas
Raquel Silva
Anh Nguyen

Sitting (L→R)
Jaime Arlandis
Beatriz Belbut
Inês Dias
Joana Carmona

Highlights
CAJAL Advanced Neuroscience Training Programme

The CAJAL Advanced Neuroscience Training Programme consists of six yearly courses, two held at the Champalimaud Centre for the Unknown in Lisbon and four in Bordeaux Neurocampus. These two institutes were chosen to be the first centres in Europe that will host recurring neuroscience training courses, following a model that has been successfully running in the USA for decades.

Interacting with Neural Circuits
July 14 – August 3

Understanding how activity in neural circuits drives behaviour is a fundamental problem in neuroscience. Making this link requires detailed information about the cell types and their connectivity, as well as the spatiotemporal patterns of activity in neural circuits in the intact brain during behaviour. Moreover, probing causal relationships between cellular and circuit-level processes and behaviour requires perturbation of specific elements of the circuit in a temporally and spatially precise manner.

This is a three-week course combined a lecture series featuring top speakers from around the world with a practical "hands-on" introduction to the latest methods for probing neural circuits. The aim was to first teach students the theoretical foundation of the techniques (weeks 1 and 2), and then provide them with sufficient practical experience (weeks 2 and 3) so that they will be able to establish these approaches when they return to their laboratories.

Computational Neuroscience
August 11–31

Computational Neuroscience is a rapidly evolving field whose methods and techniques are critical for understanding and modelling the brain, and also for designing and interpreting experiments. Mathematical modeling is an essential tool to cut through the vast complexity of neurobiological systems and their many interacting elements.

This three-weeks school taught the central ideas, methods, and practice of modern computational neuroscience through a combination of lectures and hands-on project work. Each morning was devoted to lectures given by distinguished international faculty on topics across the breadth of experimental and computational neuroscience. During the rest of the day, students worked on research projects in teams of two-three people under the close supervision of expert tutors and faculty.

Directors:
Leopoldo Petreanu (CR), Michael Häusser (Univ. College London), Menno Witter (Kavli Institute for Systems Neuroscience)

Directors:
Brent Doiron (Univ. of Pittsburgh), Maria Geffen (Univ. of Pennsylvania), Jakob Macke (Technical Univ. of Munich), Joe Paton (CR)

Find the Thesis list on page 139
To complement research-related activities, CR also organises scientific events on a regular basis.

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colloquia</td>
<td>23</td>
</tr>
<tr>
<td>Seminars</td>
<td>7</td>
</tr>
<tr>
<td>Conferences</td>
<td>5</td>
</tr>
<tr>
<td>Courses</td>
<td>4</td>
</tr>
<tr>
<td>Annual Retreat</td>
<td>1</td>
</tr>
<tr>
<td>Hackathon</td>
<td>1</td>
</tr>
</tbody>
</table>
The IUBMB Focused Meeting — 2019
Champalimaud Research Symposium Tissue Environment in Health and Disease — was held at the CCU from the 8th to the 10th of October 2019. The Symposium addressed how intrinsic and extrinsic environments impact on tissue homeostasis.

The meeting featured keynote lectures by Professor Elaine Fuchs and Professor Richard Locksley, who headed a diverse list of 17 distinguished speakers. In addition, the symposium included several talk presentations by selected participants (based on abstract-submission) and daily poster sessions.

The topic was highlighted from different angles and included a discussion on the homeostatic mechanisms that underlie inflammation, injury, ageing and oncogenic transformation in different tissues of our body. Invited speakers have therefore covered aspects from immunology, cell signaling, genetics and tissue regeneration in different model organisms.

The Symposium was held at the CCU, on the waterfront in central Lisbon. This unique venue, together with an exciting list of invited speakers, has fostered a lively and stimulating scientific meeting.

Highlights

Champalimaud Research Symposium 2019:
Tissue Environment in Health and Disease
October 8–10
Symposium on Imaging Hallmarks of Cancer. Pancreatic Cancer: From Cell Biology to Treatment

November 15

The "Imaging Hallmarks of Cancer" symposium was organised by Celso Matos, CR co-Director and Head of the Imaging Department at the Champalimaud Clinical Centre, in collaboration with the European School of Radiology (ESOR).

This advanced multidisciplinary symposium bridged basic biological science and modern clinical practice with a special focus in pancreatic cancer. Internationally renowned experts reviewed the challenges and opportunities in pancreatic cancer research, highlighting the potential of modern imaging modalities to drive breakthroughs in pancreatic cancer, and to envision new developments in pancreatic cancer treatment.

Cool Tools for Science: Users Innovation

May 29

In its 1st edition, "Cool Tools For Science" - an event for Life Sciences and Health researchers - gathered more than 70 participants, from Portugal and abroad. Users of research infrastructures were invited to present customised tools developed by themselves to solve problems for which there is no general solution available. 26 tools from a multiplicity of research areas were presented in short pitches and/or demonstrations. Prizes were given to the coolest innovation and to the coolest presentation.

Event organisers: Biodata.pt; CONGENTO; RNEM - Portuguese Mass Spectrometry Network

Local organisers: João Cruz and Laura Ward
As the CR community grows, its culture evolves with it. In the last few years, CR members introduced several new initiatives, as well as carried on with long-lasting, successful activities, such as the annual retreat, thereby continuously enriching the social and scientific life at CR.

Culture

Kickstarter

The CR Kickstarter is a new internal funding mechanism designed to promote internal collaborative projects and the development of shared ideas and resources. In this initiative, which has been successfully running at CR since 2016, a portion of each lab’s budget is allocated to projects proposed in this system. Anyone may propose projects, which must involve, or benefit, a group wider than one lab, along with a minimum required budget. If the project can gain enough support and meets the eligibility requirements, it will be funded.

In 2019, 16 new projects received support from the CR community that addressed a range of needs. These include projects dedicated to developing analysis and behavioural software, purchasing technical equipment and producing various types of educational events.

Organisers:
Pedro Garcia da Silva
Marta Mota
Zachary Mainen

Highlights

An example of a Kickstarter project where behavioural rigs were built using tools developed at CR (Bonsai and HARP). The rigs will be used by several CR labs to study visual attention and expectation in mice.

CISS Champalimaud Internal Seminar Series

Each week, two CR researchers deliver a 25-minute presentation about their work, after which they receive feedback and questions from the CR community. These events, in addition to creating an atmosphere that facilitates collaboration, also provide a platform for junior researchers to advance their skills in preparing and delivering oral presentations to large audiences.
Monthly Charity Bake Sale

The monthly charity bake sale started in 2017 by a group of CR members dubbed “The Baking Lab”, who decided to channel their love of baking towards charity. Besides the long list of dedicated bakers who rotate between events, other volunteers also contribute with juice, coffee and tea that benefactors receive for free to accompany their afternoon pastry.

In 2019, the group organised 11 events to support both national and international charities.

Organisers:
Irene Argudo
Márcia Matos
Víctoria Brugada

Charities:
Nuvem Vitória
Ajuda de mãe
Plataforma de apoio aos refugiados
Help Moçambique
CC Parede
Maria Cristina Foundation
Missão Patas Felizes
Make a Wish Foundation
UNICEF, Syria Children
Refood Lapa
Oceanos sem plásticos

Green Team @ CCU

Motivated by the environmental crisis facing society, and conscious of the large carbon and waste footprint of biomedical sciences, in 2019 various initiatives were started by the CCU community. These included a recycling scheme for disposable coffee capsules; the bulk buying of reusable coffee capsules; distributing reusable water bottles to all staff; removing all plastic cups from water machines and including ‘Green Tips’ in the weekly newsletter.

These small steps galvanised the creation of a community-led group - the Green Team @CCU - with the goal to conserve natural resources and transform the CCU into a positive example of environmentally friendly practices in research and medicine. The Green Team @CCU is currently collaborating with research teams in the UK to explore and test the best ways to conduct our work in an environmentally responsible manner, and in 2020, with Lisbon the Green Capital of Europe, aims to create a network of institutes in Lisbon to share environmental best practices in medicine and research.

Patrícia Correia
Roksana Pirzgalska
Ruth Diez del Corral
Susana Lima

CR Annual Retreat

The Annual Retreat is a major event that gathers all CR members in a remote location for a period of four days. The retreat serves the purpose of familiarising individual scientists with each other’s work while creating a sense of community. It combines scientific events, such as poster sessions, with creative cultural and social activities. As the CR continues to grow in numbers and scope of research, these events, now more than ever, serve as an important means of maintaining the scientific culture of collaboration and cooperation at CR.

June 25–28
Location:
Vila Galé Clube de Campo, Alentejo

Retreat committee:
Catarina Pimentel
Gonzalo Guimarães
Irene Argudo
João Pereira
Patrícia Correia
Roksana Pirzgalska
Ruth Diez del Corral
Susana Lima

Greener labs - Greener planet: increased use of reusable experimental equipment can help reduce waste.
One of CR’s stated goals is to share knowledge not only within the scientific community but also with the community at large. Many CR researchers, at all career stages, adopt this vision and choose to organise and participate in various outreach activities, both at and outside of the CCU.

First ProjectAr Watch – Talk – Act: “Chasing Coral”

This new event series, which sprung out of the outreach event-series, Ar | Respire Connosco, aims to raise awareness for emerging societal issues while backing them up with science. ProjectAr links the screening of movies and documentaries with an open conversation, that will hopefully raise awareness for emerging societal issues from a scientific perspective. In the first ProjectAr, which happened during “Global Climate Change week”, we organised a free, public screening of the documentary “Chasing Coral”. The film was followed by two short presentations by marine biologists, and an open discussion among all participants.

Team: Catarina Pimentel, Patricia Correia, Catarina Ramos, Eline Smaragdi, Rita Figueiredo, Marta Correia, Diogo Matias, Alexandre Azinheira, Pedro Alves, Kristin Fischer, Tatiana Silva, Tiago Quendera, Laura Ward, Francisco Romero

Neuronautas: young brain explorers – CR’s Academia Gulbenkian do Conhecimento is off to a great start

The ambitious citizen science project “Neuronautas”, which was selected in 2018 to be part of the first Academias Gulbenkian do Conhecimento, ran its "pilot" edition in 2019. The Neuronautas academy aims to train young people to follow their curiosity, question their own assumptions and challenge the unknown. To this end, a team of scientists, science communicators and alumni of the Champalimaud Foundation, developed an experimental methodology where highschool students explore concepts in neuroscience by learning how to effectively utilize commonly available equipment and software.

Team: Goncalo Lopes, Danbee Kim, Nuno Loureiro, Rita Baptista, João Frazão, Catarina Ramos
The Education project “Metacognition Lab: Learning to Learn” receives a BPI “la Caixa” Infância Award

LaMAA (Laboratório de Metacognição: Aprender a Aprender), was one of the winners of the BPI “la Caixa” Infância 2019 Awards. The programme aims to promote the application of metacognition techniques to the learning process, with the goal of helping users to learn how to learn.

Metacognition relates to knowing what you know. These courses aim to facilitate the understanding of these concepts and to “calibrate” the study method. This programme answers an important educational need, as there are currently no Portuguese courses that apply metacognition approaches to the learning of different disciplines in a coherent and integrated way.

The first two courses will be dedicated to Neuroscience and Machine Learning. The programme will be developed and implemented by a team of engineers from TreeTree2 and Instituto Superior Técnico, and neuroscientists from the Champalimaud Foundation.

Team:
André Mendonça, Catarina Ramos

Artificial Intelligence in Health, Robotics and Programming:
Next Einstein Forum Cabo Verde Africa Science Week

The third event of the Next Einstein Forum – Africa Science Week Cape Verde 2019 took place over the course of four days (26 to 29 September) at the island of Santiago, in São Lourenço dos Órgãos in Cape Verde.

A team of CR scientists participated in the event, during which about 150 children and teenagers, mostly girls, developed skills in a wide range of topics including robotics and its applications in our daily lives, health, programming and the web.

Team:
Filipe Rodrigues, Hugo Marques, João Frazão

With 15,000 visitors, Ar Magazine is reaching curious minds around the globe

How do sleepless nights influence the health of your gut? How can a novel AI method revolutionise the study of collective behaviour? Ar Magazine features news about recent discoveries, short videos, comics, poems and interviews, all with a science-twist. In 2019, 29 unique pieces were published, drawing more than 15,000 visitors world-wide.

A special highlight of Ar Magazine during 2019 was the short-videos series “Science Snapshots”. This series features the most recent breakthroughs made by the investigators of the Champalimaud Centre for the Unknown as they tackle some of biology’s greatest mysteries.

The full playlist is available on www.youtube.com

Team:
Ana Gerschenfeld, Catarina Ramos, Liad Hollender
Outreach

At the CCU

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Level of interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ Academia Gulbenkian do Conhecimento “Neuronautas”</td>
<td>5</td>
</tr>
<tr>
<td>Job shadowing</td>
<td>4</td>
</tr>
<tr>
<td>LaMAA: Laboratório de Metacognição Aprender a Aprender</td>
<td>3</td>
</tr>
<tr>
<td>MICRODay</td>
<td>2</td>
</tr>
<tr>
<td>~ ~ ProjectAR: “Chasing Coral”</td>
<td>1</td>
</tr>
<tr>
<td>~ School visits</td>
<td></td>
</tr>
</tbody>
</table>

6 Initiatives
45 Volunteers
~1100 Public

At the CCU

<table>
<thead>
<tr>
<th>Target audience</th>
<th>Number of participants</th>
<th>Number of volunteers</th>
</tr>
</thead>
<tbody>
<tr>
<td>high school</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>college</td>
<td>300</td>
<td>15</td>
</tr>
<tr>
<td>families</td>
<td>600</td>
<td>20</td>
</tr>
<tr>
<td>adults</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>scicommers</td>
<td>300</td>
<td>25</td>
</tr>
</tbody>
</table>

Outside the CCU

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Level of interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 years of Colégio Valsassina</td>
<td>5</td>
</tr>
<tr>
<td>F. C. Gulbenkian</td>
<td></td>
</tr>
<tr>
<td>2nd Citizen Science Meeting. Academia Nacional das Ciências</td>
<td></td>
</tr>
<tr>
<td>2nd Excellence in Science Communication Workshop. European Research Council, Brussels</td>
<td></td>
</tr>
<tr>
<td>Brain Awareness Week. Fábrica das Artes</td>
<td></td>
</tr>
<tr>
<td>Congressos dos Cozinheiros. LX Factory</td>
<td></td>
</tr>
<tr>
<td>12 Initiatives 20 Volunteers ~2250 Public</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of participants</th>
<th>Number of volunteers</th>
</tr>
</thead>
<tbody>
<tr>
<td>high school</td>
<td>50</td>
</tr>
<tr>
<td>college</td>
<td>300</td>
</tr>
<tr>
<td>families</td>
<td>600</td>
</tr>
<tr>
<td>adults</td>
<td>100</td>
</tr>
<tr>
<td>scicommers</td>
<td>300</td>
</tr>
</tbody>
</table>

Thank you

Albino O. Maia
Ana Cruz
Ana Fernandes
Anna Pezzarossa
Beatriz Belbut
Bruna Costa
Carlos Ribeiro
Catarina Brás
Catarina Pimental
Christian Machens
Clara Ferreira
Danbee Kim
Daniel Nunes
Davide Accardi
Denise Camacho
Edite Figueiras
Eline Smaragdi
Filipe Rodrigues
Francisco Romero
Gautam Agarwal
Gonçalo Lopes
Hugo Marques
Inês Soeiro
João Afonso
João Frazão
João Marques
Joe Paton
Julia Huntenburg
Kcénia Bougrov
Kristin Fischer
Laura Ward
Leonor Morgado
Lucas Martins
Margarida Anjos
Maria Inês Vicente
Marla Estrada
Matheus Farías
Michael Pereira
Mirjam Heinemans
Nuno Calasim
Nuno Loureiro
Patrícia Correia
Pedro Alves
Rita Baptista
Rita Fior
Ruth Díez del Corral
Sander Keemink
Simone Zacarias
Susana Lima
Tatiana Silva
Teresa Dias
Thabêlò Khoboko
Thiago Carvalho
Tiago Costa
Tiago Quendera
Zach Mainen
Facilitating research with dedicated administrative and technical support
CR Support Units

The CR Support Units (CRSU) provide all administrative, financial and operational assistance to the CR community. Accompanying the evolution and growth of CR, the support provided to CR’s scientists also continuously grows in organisation and capacities. The CRSU team aims to provide all science administration, management and communication support to boost the work of scientists, maximising the focus on research.

Graduate Programmes Office @ IST Jobfest

The Graduate Programmes Office responded to the invitation of the AEIST (Associação de Estudantes do Instituto Superior Técnico) to participate in the IST Jobfest of 2019, with a team counting two INPDP students - Matheus Farias and Lucas Martins and both programme managers - Simone Zacarias and Maria Teresa Dias.

The INPDP booth had a steady crowd of undergraduate students, attracted by the setup the team brought from the CCU. The students stayed a while, chatting with the INPDP student about their research and experience at the programme.

Science Communication Office: CR in the Media

In 2019, the Science Communication Office produced 17 press releases and liaised 22 media requests. Several press releases evoked significant interest in the media, such as those that announced the publication of research articles from the de Polavieja, Ribeiro and Veiga-Fernandes labs. These articles featured innovations in the fields of collective behaviour, food-choice and the interaction between the immune and the nervous systems, respectively. A notable media request was made by the magazine National Geographic. The magazine interviewed CR investigator Rita Fior for an article about breakthroughs in personalised medicine.
Events

The Events unit supports scientific events organized by CR. From the large annual events like the CR Retreat and Symposium to our weekly CISS and Colloquium, the team will be able to help you with all event-related details, from conception and planning to logistical details such as travel arrangements, and other tasks necessary to managing the lab. This unit also supports the Faculty’s events and other ad-hoc events such as Ar events and other outreach initiatives. The team also consolidates the management of all communal AV equipment, as well as expertise in videography and photography.

Coordinator: Patricia Correia
Events organiser: Ana Casaca
Events assistant: Pedro Alves
AV technician: Alexandre Azinheira

Human Resources & Fellows Support Office

Every person that joins CR enters through the HR & Fellows Support Office. Whether it’s a PI or an intern or simply a guest, the HR & Fellows Support Office advises on all essential procedures: contracts, social security, medical insurance, etc. The Office also supports all CR recruiting processes, including that of the graduate programme.

CR has almost 430 affiliated fellows, 330 of whom have ongoing fellowship contracts with the Champalimaud Foundation (CF). The Office’s role is to facilitate communication between CR and CF’s Central Administration departments, as well as to ensure that all commitments to the fellows are met.

Direction Support Team

The Direction Support Team receives, delegates, and implements direct instructions from the Research Direction Team and the Director of Research Support. This team also serves as a primary contact point for any problem-solving needs within CR, being able to advise on the resources available to the CR community.

Director of research support: Ryan Herbert
Executive coordinator: Inês Soeiro
Operations manager: Cátia Feliciano
Financial manager: Joaquim Teixeira

Lab Administration

The Laboratory Administrator team provides support to the scientists working at CR so that they can focus on research. Every laboratory is assigned a Lab Administrator that works closely with the PIs and lab managers assisting the labs in their ordering process, budget management, and other tasks necessary to managing the lab. The lab administrators coordinate with other CR support units and CF departments such as post-award, logistics, accounting, IT, and maintenance, as well as external agents such as suppliers, service providers, and shipping companies.

Coordinator: Raquel Gonçalves
Lab administrators: Vesna Petojevic, Telma Carrilho, Lauren Noblet, António Raposo, Rita Saraiva, Ana Margarida Nunes

Human Resources & Fellows Support Office

Among the long list of responsibilities of CRSU’s operations manager is the safety and functionality of the CBU’s Open Labs.
Office for Sponsored Programmes Post-Award

CR’s Post-Award team at the Office for Sponsored Programmes (OSP) provides support in management and administration of external funds for research, including financial and scientific reporting, eligibility of expenditure, compliance and external audits.

The Post-Award team also functions as a facilitator of more bureaucratic aspects of grant management, thereby creating a bridge between the CR Scientific Community and the funding agencies. Post-award’s support is also provided by a resident team of project officers from Verbochave, Consultoria Lda.

Coordinator: Joaquim Teixeira
Scientific Officer: Francisco Semedo

Graduate Program Office

This Graduate Program Office runs mainly through the Teaching Lab and Classroom, the hubs of our PhD programme and all courses happening at CR. The team deals with the administrative and logistic aspects of the INPDP programme, the CAJAL courses and other teaching events. The team also manages the CR library, the Teaching Lab space, and the Classroom bookings. The Office also provides assistance to the student’s social events, supports the INPDP recruiting process, and hosts the annual INPDP SAB visits.

Graduate programme managers: Maria Teresa Dias, Simone Zacarias

Pre-Award

The Pre-Award team, among other responsibilities, provides support to the researchers hosted at the Champalimaud Center for the Unknown – CCU throughout the first stages of the grant life cycle: i) the identification of external funding opportunities for research; ii) the preparation and submission of research applications from the initiative of the researchers to external funding; iii) the negotiation of successfully funded projects up to the signing of the official documents.

Coordinator: Joana Lamego
Grant managers: Andreia Tavares, Bruno Ceña, Filipa Cardoso, Mariana Santa-Marta

Science Communication Office

The Science Communication Office is responsible for disseminating information on the activities and ongoing or emerging objectives of the Champalimaud Research to all relevant parties. In particular, this Unit is responsible for maintaining fluent internal and external communication channels, including CR’s online presence, liaising with the media and the production of communication documents / materials, such as the annual report. In parallel, this Unit coordinates science communication initiatives that range from science education and outreach events to the organization of scientific meetings. The team is also able to support the CR community in their scientific endeavours, with in-house scientific design and illustration.

Coordinator: Catarina Ramos
Science writers: Ana Gerschenfeld, Liad Hollender
Science education & outreach officer: Raquel Gomes
Graphic designers: Diogo Matias, Marta Correia
Science graphic designer: Gil Costa
Multimedia producer: Alexandre Azinheira

Project Managers

The Project Managers are responsible for the day-to-day implementation of large scale institutional and consortia projects. They play a pivotal liaison role, acting as the centre of communication for all internal and external stakeholders, monitoring project progress, identifying risks, coordinating technical reporting and ensuring effective dissemination.

Managers: João Cruz, Laura Ward
The Scientific and Technological Platforms of the Champalimaud Centre for the Unknown carry out technical-scientific and specialised support work for the activities of research groups and clinicians. They operate in a wide range of areas, from the development of sophisticated technologies in animal models, imaging tools, hardware and software, to resource management and research infrastructures.
Platforms Highlights

Histopathology platform: Implementing techniques for advanced tissue analysis

In 2019, the histopathology platform has implemented several new techniques for tissue processing and analysis. Among these are clearing techniques necessary for preparation of the tissue for microscopy, implementation of paraffin services for fine sectioning of tissues and additional histochemistry techniques for tissue analysis, such as the identification of structural abnormalities.

Fly platform: Landing in the Drosophila World – Drosophila Introductory Course

The first "Landing in the Drosophila World Course" took place in September 2019 at the Champalimaud Centre for the Unknown. The course was an initiative of CONGENTO, that was carried out through the joint efforts of three institutions: CEDOC, CF, and IGC, and the participation of 19 invited speakers from these research centres. These were intense days, but well enjoyed by everyone, both organisers and students.

Scientific Hardware Platform: Pushing Science Forward With Open-Source Hardware

During 2019, the Scientific Hardware platform kept expanding its open-source tools portfolio and spreading the word among the neuroscience community. Through a close connection with the most popular open-source projects, the platform is now well known and is a worldwide reference when it comes to open-source hardware. This was the year where the platform shipped more open-source tools around the globe. All these units were developed in-house.

Histopathology Platform

The Histopathology platform provides technical and scientific support to the CR community regarding tissue processing, sectioning, staining and clearing. The platform processes mouse, rat, human, fly and zebrafish samples through different techniques, such as paraffin embedding, vibratome and cryostat sectioning, immunohistochemistry of thin sections and thick blocks, staining techniques and several clearing techniques. In addition to implementing cutting-edge techniques, according to needs of the scientific community, the Histopathology platform is also responsible for protocols optimisation.

Histopathology technicians: Susana Dias, Sérgio Casimiro, Inês Marques, Maria Inês Romano
Advanced BioImaging and BioOptics Experimental Platform (ABBE)

The Advanced BioImaging and BioOptics Experimental (ABBE) platform provides training and access to a variety of cutting-edge light microscopes and image analysis software.

2019 was a year of progress in the ABBE platform. The team was joined by Anna Pezzarossa, a microscopy and imaging specialist. In addition, the platform increased its light-sheet fluorescence microscopy capabilities with the acquisition of a light-sheet based machine. On the imaging analysis side, the facility also increased its range of services with “Merlin” - a new workstation with cutting-edge capabilities.

In May, 2019, the platform, in concert with the national PPBI network of microscopy departments, has opened its doors to the public with MICRODia: an outreach event for high-school students. The day included a visit to the facility where the students learned about the principles of fluorescence and had the possibility to see their own DNA using microscopy.

Coordinator: Pedro Garcia da Silva
Group head: Davide Accardi
Senior technician: Anna Pezzarossa
Technician: Leonor Morgado

Fish Platform

The Fish Platform oversees an animal facility housing and breeding zebrafish, the second most used animal model in biomedical research, with very rigorous health and welfare standards. It works closely with the Molecular and Transgenic Tools platform to provide advanced research services such as transgenic and gene-edited zebrafish and also collaborates with other institutions and companies to develop new protocols and technologies. Its ambitious research service portfolio and scientific program have granted the Platform a substantial international reputation through several peer-reviewed publications and presentations at international meetings. The Fish Platform is also part of (CONGENTO), where it plays a pivotal role by delivering zebrafish services and providing facility management consulting to both the national and international research communities.

Coordinator and head: Ana Catarina CerRAL
Facility manager: Joana Monteiro (CONGENTO)
Research technicians: Mariana Sampaio, Olivia Knight (CONGENTO), Inês Oliveira
Facility technicians: Carolina Cabrera (CONGENTO), Seidy Semeda, Maria João Pereira

Flow Cytometry Platform

The goal of the Flow Cytometry Platform is to offer technical and scientific advice regarding the use of flow cytometry instruments to Champalimaud Foundation community and also to external research groups. This platform provides training in flow cytometry concepts, expertise for experimental planning and support in instrument operation and data analysis.

Since 2017, the Flow Cytometry platform is part of the FLxFlow community – a Portuguese network for Flow Cytometry, which aims to bring在一起 core Flow Facilities in the Lisbon area with the goal of enabling the access of scientists to cutting edge applications.

Coordinator: Pedro Garcia da Silva
Group head: Ana Vieira
Technician: Renato Colaço

Fly Platform

The Fly platform provides state-of-the-art conditions for breeding, maintenance and manipulation of Drosophila to all CR researchers. Apart from management and maintenance of all shared equipment and spaces, it provides technical services ranging from core activities such as medium production and stock maintenance, to higher technically demanding procedures such as organ dissection, staining and embryo microinjection. Importantly, by closely working with other CR Platforms, the Fly platform is in a position to offer full turnkey projects to its users. Such examples include transgenic and mutant stock generation (from strategy choice and vector design to embryo microinjection, fly screening, genotyping and stock balancing) done in close collaboration with the MTT Platform, or the registry of brain confocal imaging (from organ dissection and staining to confocal imaging and registry), done in close collaboration with the ABBE and Software platforms. The Fly platform is part of the trans-institutional infrastructure CONGENTO, through which it offers services to external users as well.

Coordinator: Isabel Campos
Manager: Liliana Costa
Technicians: Catarina Craveiro, Carina Portugal, Ana Reis, Sofia Silva, Patricia Valentim, Zichiena Zovo
Molecular and Transgenic Tools Platform

The Molecular and Transgenic Tools Platform (MTTP) performs complex cloning and gene editing projects. It assists users during all stages from the conceptual design by providing support in molecular biology strategies from basic services to complex cloning of knock-out and knock-in constructs to generate new cellular, zebrafish, fly or mouse models.

The MTTP also harbours a viral-vector production service and has several collaborations for continuous development and implementation of new viral systems. The platform acts as a hub of shared resources and expertise not only for the CR, but also for the national and international research communities, academic and industry, by providing services through CONGENTO.

Coordinator and head: Ana Catarina Cortal
Molecular tools manager: Ana Raquel Tomás
Virus and cell manager: Ana Cunha (CONGENTO)
Research technicians: Mariana Velez, Daniela Freire

Rodent Platform

The Rodent platform is primarily responsible for the maintenance and veterinary assistance of all CR rodent animal models, strictly following European Guidelines (Directive 2010/63/UE of September 22, 2010), National Laws (Decree Law 113/2013, of August 7) and Federation of European Laboratory Animal Science Associations (FELASA) guidelines and recommendations concerning laboratory animal welfare, scientific use and proper education/training of all personnel performing animal work.

Apart from managing and maintaining all shared equipment and spaces in the facility, Rodent platform staff members are also providing daily care and monitoring of animals during housing and experiments. Importantly, all CR labs can also rely on the platform for a comprehensive colony management ranging from weaning and sampling to genotyping, complying with the best animal welfare practices and refinement and reduction policies. The Rodent platform also runs a set of highly specialised and technically demanding services, some of which are done in close collaboration with the MTT Platform.

Coordinator: Isabel Campos
Veterinary: Dolores Bonaparte
Manager: Rita Torre
Technicians: Catarina Craveiro, Ana Pereira, Cláudio Macedo, Erineo Silva, Eduardo André, Wílilíoya Pontes
Colony managers: Ana Vaz, Bruno Novaia, Ana Rita Gonçalves, Carlos Silva, Joshaba Abreu, Wilma Sobral, João Pereira, Leonor Gomes

Scientific Hardware Platform

The platform is responsible for developing and participating in projects that have a high impact on science. As they are intrinsically inseparable, the field of electronics and mechanics are addressed. The platform provides the full pipeline of hardware development from requirement specification and analysis, design, development, implementation, validation procedures and test execution. It also handles diverse services, including 3D printing services, day-to-day support and management of both electronic and mechanical workshops.

Coordinator: Pedro Garcia da Silva
Group head: Ricardo Ribeiro
Cloud specialist: João Baúto
Data manager: Hugo Cachitas
Software developer: Luís Teixeira

Scientific Software Platform

The Scientific Software Platform aims to support high-level scientific research by providing high-quality software support and ensuring the performance of CR computational infrastructures. With educational backgrounds in Software, Electrical and Physics Engineering, the platform’s team members have a broad range of skills and knowledge in areas such as computer vision, image processing, machine learning, hardware control, graphics, web, data management and systems administration. In 2018, the team focused on the development of the PyBpod and Python Video Annotator for behavioural analysis, and on the improvement of the data flow pipeline. The later improvement was achieved with the construction of a high performance computational and storage cluster and by the installation of an internal high-speed network to connect the data acquisition equipment to the computational resources.

Coordinator: Pedro Garcia da Silva
Group head: Ricardo Ribeiro
Cloud specialist: João Baúto
Data manager: Hugo Cachitas
Software developer: Luís Teixeira

This image shows software developed by the Scientific Software Platform for annotation of behavioural videos.
The Nitty Gritty

For those who want to know more in detail what we’ve done
Publications

Research Articles

Books

Conference Proceedings

International Groups Recommendations

Funding

European Commission – Horizon 2020
- Human brain project specific grant
 - Programme: H2020-5GA-PEOPLE-2017
 - Call/Programme: ICDT 2014
 - Active period: 01/10/17-31/12/20

- Brain and Behavior Research Foundation
 - Romain Ligneul (Maiten lab)
 - From Neuronal Code to Behavior
 - Gennaro Vizza and the Chic Saleh Costa
 - Call/Programme: 01/SAICT/2016
 - Active period: 01/01/17-01/01/18

- Breast Cancer Now
 - Bruno Costa-Silva
 - Batch effects in pre-metastatic node signalling and long-term memory in breast cancer
 - Call/Programme: Catalyst Programme
 - Active period: 04/08/18-03/06/21

- Cancer Research UK
 - Carlos Ribeiro (Project Head PI: Julia Cordero, University of Glasgow)
 - Call/Programme: Pioneer Award
 - Project Title: Dopamine: a model to study mechanisms of reward, learning and behavioural changes
 - European Commission – Horizon 2020
 - Megan Carey
 - Cellular circuit mechanisms of decision-making and learning
 - Call/Programme: ERC-2014-STG
 - Active period: 01/05/15-30/04/20

- American Portuguese Biomedical Research Fund
 - Rita Costa
 - Behavioural Phenotyping using Inertial Neuronal Probes (INP)
Andréia Maia (Casillón-Martín lab)
Enhancing the Naturalkiller cells with a complementary approach for designing cell therapy
active on cortico-limbic circuits (HALF/CEP)
Call/Programme: 2019 PhD Fellowships
Active period: 01/01/20-31/12/23

Marina Ribeiro (Choppa lab)
Neural plasticity on a visually-guided behavioral task in zebrafish
Call/Programme: 2017 PhD Fellowships
Active period: 01/08/17-31/07/22

Joana Silva (Ferreira lab)
Nanoengineering platform based on NbP/P3HT for broad cancer therapeutic targeting and detection
Call/Programme: 2016 PhD Fellowships
Active period: 09/01/17-31/08/21

Yasmin Pires (Ferreira lab)
Dissection in ultra-high-clearance plasma exchange for patients with the mismatch enmismatched in a zebrafish, angiody and newborn
Call/Programme: 2016 PhD Fellowships
Active period: 31/01/17-28/02/21

Manuela Ferreira (Vieira-Ferreira lab)
A modulatory platform for designing on suprasympathetic neurons for cancer therapeutic applications (CIF/MADE)
Call/Programme: 2019 PhD Fellowships
Active period: 01/02/17-31/07/19

Gabriela Ribeiro (Oliveira-Maia lab)
Modulation of postnatal social behaviors in weight loss surgery rats
Call/Programme: 2017 PhD Fellowships
Active period: 01/01/18-31/01/22

Gonçalo Cunha (Oliva-Maia lab)
Animal models of mechanisms involved in neuronal connectivity in dentate gyrus
Call/Programme: 2019 PhD Fellowships
Active period: 01/08/16-31/07/22

Ana Maia (Oliveira-Maia lab)
Immune dysfunction in obsessive-compulsive disorder: from neuroimmune and behavioral to translational and brain imaging correlation
Call/Programme: 2019 PhD Fellowships
Active period: 07/02/17-30/06/24

Lucas Marques (Oliveira-Maia lab)
Dietary modulation in the condition of obesity
Call/Programme: 2020 PhD Fellowships
Active period: 01/08/20-31/07/24

Fernando Cavaleiro (Moreno lab)
The role of delayed gratification in the development of obesity
Call/Programme: 2019 PhD Fellowships
Active period: 13/01/19-31/01/22

Ana Maria Botelho (Oliveira-Maia lab)
Innate lymphoid cells in the gut: the role of obesity and the microbiota
Call/Programme: 2017 PhD Fellowships
Active period: 01/07/18-31/06/22

Maria Bettencourt (Moreno lab)
The role of cell fitness in tumor progression and metastasis formation
Call/Programme: 2019 PhD Fellowships
Active period: 01/08/19-31/07/22

Filipe Rodrigues (Patton lab)
Delinking cognitive and movement behaviors in weight loss surgery
Call/Programme: 2017 PhD Fellowships
Active period: 01/01/18-31/01/22

Katarzyna Lemos (Oliveira-Maia lab)
The role of cell fitness in tumor progression and metastasis formation
Call/Programme: 2019 PhD Fellowships
Active period: 01/01/19-31/01/21

Catarina Ribeiro (Moreno lab)
The role of cell fitness in tumor progression and metastasis formation
Call/Programme: 2019 PhD Fellowships
Active period: 01/01/19-31/01/21

Teresa Serradas Duarte (Patton lab)
Studying the control system guiding during female tracking
Call/Programme: 2019 PhD Fellowships
Active period: 10/06/19-31/05/25

Human Frontier Science Program
Constance Lenschow (Limbo lab)
Understanding the role of the vagus nerve in the control of the stress axis
Call/Programme: HFSP Postdoctoral Fellowships
Active period: 01/07/18-31/05/20

Camille Maze (Patton lab)
Neuronal feedback mechanisms and their role in human behavior
Call/Programme: 2017 PhD Fellowships
Active period: 01/01/18-31/08/24

Davide Reato (Renard lab)
Role of racial identity on reward and social behavior
Call/Programme: 2017 Individual Postdoctoral Fellowships
Active period: 01/01/17-31/08/21

Sociedade Portuguesa de Hematologia
Bruna Viana Ferreira (João lab)
The role of microRNAs in the interplay of melanopoiesis and hematopoiesis
Call/Programme: 2018 Individual Postdoctoral Fellowships
Active period: 01/01/18-31/08/22

The Federation of European Biochemical Societies
Ana Queiroz (Oliveira-Maia lab)
Mediation of cell competition on nutrient cravings: dissecting individual differences
Call/Programme: 2019 PhD Fellowships
Active period: 01/01/19-31/01/22

Education Projects
BPI & "la Caixa" Foundation
Catarina Ramos (Project coordinator: Treu2Tree)
Alzheimer’s: a Journey into Laboratory and Clinical Perspectives
Call/Programme: Prémio BPI-1a Caixa Indústria
Active period: 01/09/19-31/08/20

Fundação Calouste Gulbenkian
Catarina Ramos
Metabolismo Experimental
Active period: 18/06/17-19/12/23

Support to Conferences & Travel Grants:
Constance Lenschow (Limbo lab)
Funding entity: Call/Programme: BPI-1a Caixa Indústria and Short Stay 2019 grant

Gabriela Ribeiro (Oliveira-Maia lab)
Funding entity: Call/Programme: Travel Scholarship, New Investigators Autumn School, Naples, Italy. European Association for the Study of Obesity

Zachary Molina
Funding entity: Call/Programme: Welcome Trust 2019 Cambridge Research Symposium: Tissue homeostasis in Inflammation and Repair

Henrique Veiga-Fernandes
Funding entity: Call/Programme: IUBMB-International Union of Biochemistry and Molecular Biology 2019 Young Investigators Symposium: Tissue Homeostasis in Health and Disease

Eugenio Chiquet
Funding entity: Call/Programme: EU-FETI (The Paul Foundation) Kavli workshop on neural circuits and behavior of Drosophila meeting
PhD Theses

Catarina Albergaria
Behavioral state modulation of multiple chemical sensing
Thesis advisor: Megan Carey

Dana Darmohray
Cellular contributions to dopamine self-administration and learning in mice
Thesis advisor: Megan Carey

Elizabeth Rickenbach
Mechanisms of self-defense promotion and memory enhancement in the presence of fluctuating threat signals
Thesis advisor: Pedro Castro-Rodrigues

Andrea Lean
Testing the predictive power of automatic features in social encoding
Thesis advisor: Gonzalo de Polavieja & Miguel Orger

António Gromberg
Early life social experiences shape social anxiety and stress reactivity in mice
Thesis advisor: Gonzalo de Polavieja & Michael Orger

José Afonso
Multiplexed simultaneous optical and electrophysiological imaging of adult salamander spinal interneurons
Thesis advisor: Alfonso Renart

Luís Moreira
Male choice and social preference in Mus musculus females
Thesis advisor: Ana Gerschenfeld

Marina Fridman
Contextual modulation of visual perceptual processes
Thesis advisor: Cristina João

Nuno Calaim
Beliefs on spike coding networks
Thesis advisor: Cristina João

Paule Miguel dos Santos Ferreira
Vasal–basal diameter in mice using optical clearance and high-speed imaging
Thesis advisor: Alfonso Renart

António Gromberg
Optogenetic and multiphoton microscopy imaging during social interaction
Thesis advisor: Alfonso Renart

Pedro Castro-Rodrigues
Knowledge and experience: prenatal neural development and the effects of adulthood on hippocampal plasticity
Thesis advisor: Alfonso Renart

Rita Ribeiro da Silva
Immune recovery of HIV infected patients and immune memory
Thesis advisor: Cristina João

MSc Theses

Amber Brands
Cortical–based dynamics in stochastic games and spatio–temporal network representation
Thesis advisor: Zachary Mainen

Ana Beatriz Vardone
Combining effects of OT (oxytocin) and DA (dopamine) during the social asymmetry model of split-brain social behavior
Thesis advisor: Rita For

Ana Sofia Castro Verde
Combining mathematical and biological approaches to understand the development of colorectal cancer
Thesis advisor: Dario Silverio

Bárbara Costa
Toward high-resolution functional connectivity in the mouse brain
Thesis advisor: Dennis Sherman

Carolina Seabra
Prostate Cancer Biophysical and Genomic Profiling of Patients with Biphenotypic Prostate Cancer
Thesis advisor: Dario Silverio

Montana Atwood
Defining the working memory landscape of Drosophila melanogaster
Thesis advisor: Dario Silverio

Cláudia Santos Constantino
Resilience study of human populations extracted from chimpanzee social patterns and their implications for the future
Thesis advisor: Danilo Silva

Dario Silverio
Cortical anatomy and its evolution using functional magnetic stimulation
Thesis advisor: Alfonso Oliveira-Maia

João Carvalho
Automatic detection and segmentation of AST lesions in a real-world clinical setting
Thesis advisor: Dario Silverio

Inês Dias
Investigating the structural and physiological properties of spinal interneurons and the regulation of sensory transmission across the estrus cycle of female rats
Thesis advisor: Dario Silverio

Leonard Dupont
Error signals during locomotion: neuronal correlates of decision-making
Thesis advisor: Dario Silverio

Complex spikes in the mouse neocortex
Thesis advisor: Megan Carey

Lucas Soares
An unsupervised generative strategy for inferring and exploiting structured social–behavioural events in mice, and its application to mass mouse behavior
Thesis advisor: Zachary Mainen

Maria Estévez MM
From the cortex to the ventral tegmental area: a possible role for striatal spiny neurons in the development of addiction
Thesis advisor: Albina Oliveira-Maia

Pedro Silva
Comparative analysis of locomotor behaviour and underlying neural system activity in Drosophila and C. elegans
Thesis advisor: Michael Orger

Renata Quintinio
Involvement of dendritic spines in a mouse model of pain
Thesis advisor: Dario Silverio

Susana Dias
3-Dimensional characteristics of granule cell self-organization in the developing cerebellum
Thesis advisor: Maria Luz Cardenas

Clara, Almeida
Histopathological and immunohistochemical analysis of the parathyroid gland
Thesis advisor: Maria Luz Cardenas

Clara, Almeida
Cerebellar contributions to locomotor behaviour and descending spinal system activity in Drosophila melanogaster
Thesis advisor: Dario Silverio

March

6 Workshop
1st Corina Jerjen workshop
Organisers: Romain Ligneau, Zachary Mainen

14 Colloquia
2 Colloquia
12 Colloquia
26–27 Conference
1 Colloquia

April

04 Colloquia
1 Colloquia
2 Colloquia
3 Colloquia

May

2 Colloquia
1 Colloquia

June

15–16 Courses
4 Andor Academy: Frontiers in fast-low-light imaging

24 Colloquia
31 Colloquia

July

15 Colloquia
12 Colloquia

August

14 Colloquia
14 Colloquia
3 Colloquia

September

15 Colloquia
5 Colloquia

October

12 Colloquia
14 Colloquia

November

13 Colloquia
12 Colloquia

December

12 Colloquia
14 Colloquia
12 Colloquia

January

15–16 Courses
4 Andor Academy: Frontiers in fast-low-light imaging

24 Colloquia
13 Colloquia
8 Colloquia

February

14 Colloquia
14 Colloquia

March

2 Colloquia
2 Colloquia

April

08 Colloquia
09 Colloquia

May

1 Colloquia

June

12 Colloquia
3 Colloquia

July

16 Colloquia
16 Colloquia

August

13 Colloquia
13 Colloquia

September

12 Colloquia
12 Colloquia

October

12 Colloquia
12 Colloquia

November

12 Colloquia
12 Colloquia

December

12 Colloquia
12 Colloquia

Agenda

January

15–16 Courses
4 Andor Academy: Frontiers in fast-low-light imaging

24 Colloquia
21 Colloquia

February

14 Colloquia
14 Colloquia

March

6 Workshop
1 Colloquia

April

04 Colloquia

May

2 Colloquia

June

15–20 SC Workshop

July

15–20 SC Workshop

August

13 Colloquia

September

12 Colloquia

October

12 Colloquia

November

12 Colloquia

December

12 Colloquia
June

04 Meet a Theorist Seminar Series
Mark van Rossum, University of Nottingham, UK
Recent Advances in Perceptual Decision Making

06 Colloquia
Jean-Christophe Billiet, Univ. of Groningen, The Netherlands
Modulation of individual behaviour by social experience

July

04 Meet a Theorist Seminar Series
Dmitri Chklovskii, Flatiron Institute, New York
How insects see motion: convergence of theory and experiment

14-3 Aug Courses
CJAL Neuroscience Training Course 2019 – Interactive Spatial Cognition
*Organisers: Gabriella Patrasso, Michael Hauser (Univ. College London); Marina Witt (Kresz Inst. for Systems Neuroscience) Support: Simone Zacarias, Maria Teresa Dias

August

11-31 Courses
CAJAL Neuroscience Training Course 2019 – Computational Neuroscience
*Organisers: Brett Gerstein (Univ. Pennsylvania); Marco Gentile (Univ. of Pennsylvania); Jakob Macke (Technisch Univ. of Munich); Joe Patton (CR) Support: Simone Zacarias, Maria Teresa Dias

September

12 Colloquia
Ronan Mamo, Johns Hopkins University; Kenneth Kriegler Institute Learning and Re-learning Movement

19 Colloquia
Mathew Conant, University College London (UCL)
Neural basis of decisions guided by sensory confidence and reward values

20–23 Courses
Londoning in the Brain - World - Introductory Course on Mouse Neuroscience
*Organisers: Fabiana Herédia and Teresa Gomes (CEDOC), Isabel Campos, João Cruz, Liliana Costa (CR); Gastão Guitur and Liliana Vieira (IGC)

26 Colloquia
Alex Schier, Harvard University, USA
Cellular Biographies: Reconstructing Developmental Trajectories

October

01 Meet a Theorist Seminar Series
Rubén Moreno-Bote, Pompeu Fabra University, Barcelona
Neural basis of decisions guided by sensory confidence and reward values

03 Colloquia
Heitor F. Martins, Baylor College of Medicine, USA
Functional organization of neural circuits for supervised motor learning in the mouse

08–10 Conference
Champigny Pancreatic Cancer Symposium 2019
Pancreatic Cancer Research & Pancreas Centre Symposium, Claire Nicol, John Howard, and Maria Janelle, Cambridge University

11 Conference
Champigny Research Symposium
*Organisers: Ana Casaca, Patricia Correa, Pedro Alves

21 Conference
CONGENTO Annual Meeting
*Organisers: João Moreira, João Monteiro and João Cruz (CR); Oriana Silva (AMAN); Sara Marques and José Belo (CEDOC), Manuel_Rabide (IGC)

21 Colloquia
Rafael Bugar, University of Oxford, UK
Neural basis of decisions guided by sensory confidence and reward values

22 Colloquia
Ilana Witten, Princeton University
Striatal circuitry for reward learning and decision making

23 Colloquia
Georg Keller, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
Encoding and decoding a multiplexed neural code in the mammalian neocortex

November

05 Meet a Theorist Seminar Series
Rafael Bugar, University of Oxford, UK
Modulation of individual behaviour by social experience

14 Colloquia
Georg Keller Friedrick Meisscher Institute for Biomedical Research (FMIB), Switzerland
An experience dependent comparator circuit in layer 2/3 of mouse cortex

15 Conference
Champigny Pancreatic Cancer Symposium
*From Cell Biology to Treatment

20 Workshop
Champigny Pancreatic Cancer Symposium: Animal Research in Portugal
*Organisers: Isabel Campos, João Cruz, Laura Lopes
Additional: Ferran Manes, Institute for Neuroscience, CONGENTO, Quito Cancer*

21 Colloquia
Yohana Scalchi, Insitut Curie, France
Morphogenesis of proliferative tissues: scaling between mechanical stress and proliferation

22 SC Workshop
Scientific Writing: by Ana Genscheleng (Science Writer, CCU)

December

03 Meet a Theorist Seminar Series
Hillel M. Greenspan, University College London (UCL)
Functional organization of neural circuits for supervised motor learning in the mouse

12 Colloquia
Marcova Vendelova, Kavli Instit. for Systems Neuroscience, Oslo, Norway
Encoding and decoding a multiplexed neural code in the mammalian neocortex

13 Event
2nd BrainMap Symposium – From Development to Medicine and Aging
Organisers: Roberto Fais & Ana Teresa Tavares (CEDOC) - Portuguese Society for Developmental Biology

January

2 “A special class on... Biology”
Instituto Superior Técnico
Public: Students from different high schools in the Greater Lisbon area

22 School visit
CCU
Public: High school students from St Peter’s International School, Lisbon

February

5 Jornadas Tecnológicas (JorTec) de Biomedica
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
Public: Undergraduate and Master’s students

March

4 School visit
CCU
Public: Students from Agrupamento de Escolas de Baja and Escola Superior de Saúde do Instituto Politécnico de Baja

3-31 Brain Awareness Week: “Cá Dentro - Descobrir o Cérebro”
Centro Cultural de Belém, Fábrica das Artes
Public: Children, Families, Schools

16–22 Brain Awareness Week: Instagram Campaign
Champigny Research Symposium
Profile: (E)uropan

21 Visit from Escola Ciência Viva
CCU
Public: Students from Escola Básica Adriano Correia de Oliveira and Escola Básica Padre Abel Varela

April

2 School visit
CCU
Public: High school students from Agrupamento de Escolas de Azambuja and Escola A Cidadela, Cascais

5 Academia Gulbenkian do Conhecimento “Neuronautas”
Opening Session
CCU
Public: 10th grade students

26 Academia Gulbenkian do Conhecimento “Neuronautas”
Session 1
CCU
Public: 10th grade students

May

3 Academia Gulbenkian do Conhecimento “Neuronautas”
Session 2
CCU
Public: 10th grade students

8 JobShop
Instituto Superior Técnico
Public: Undergraduate and Master’s students

10 Academia Gulbenkian do Conhecimento “Neuronautas”
Session 3
CCU
Public: 10th grade students

17 Academia Gulbenkian do Conhecimento “Neuronautas”
Session 4
CCU
Public: 10th grade students

18 120 Years of Colégio Valsassina, talk “Neuroscience & Learning”
Federacao Cabile Gulbenkian
Public: Students, teachers and families

21 School visit
CCU
*Public: High school students from Escola Secundária de Engenheiro de Silves and Escola Secundária de
September
4 Academia Gulbenkian do Conhecimento “Neuronautas” Final Session
CCU Public: 10th grade students
5-6 2-Day Job Shadowing Experience
CCU Public: 10th grade students
17 School visit
CCU Public: High school students from Biotech School in Fredericia, Denmark
26 Public Event ProjectAr - “Chasing Coral”
CCU Public: (Young) Adults
São Lourenço dos Orgãos, Ilha de Santiago, Cabo Verde Public: Children and unemployed young adults (mostly girls and women)
28 Aprendizagem Científica (HAC) in collaboration with Instituto Superior Técnico
Instituto Superior Técnico Public: High school students
29-30 Congresso dos Cozinheiros
Pavilhão L/XL, Lx Factory Public: Adults

October
7 1st Meeting of the Academias Gulbenkian do Conhecimento
Fundaçao Calouste Gulbenkian CCU and outdoor spaces in the neighborhood Public: 10th grade students
16 Laboratório de Metacognição e Neurociência - Aprender a Aprender (LaMAA)
in collaboration with the programme After School from Instituto Superior Técnico - Session 1
CCU Public: Students from different high schools in the Great Lisbon area
17-18 Excellence in Science Communication Workshop - Talk: “Science communication and Outreach at the Champalimaud”

November
5 School visit
CCU Public: High school students from Denmark Team: Rita Fior, Catarina Ramos
5 Laboratório de Metacognição e Neurociência - Aprender a Aprender (LaMAA)
in collaboration with the programme After School from Instituto Superior Técnico - Session 4
CCU Public: Students from different high schools in the Great Lisbon area
5 School visit
CCU Public: Undergraduate students from Associação de Estudantes de Farmácia, Universidade de Lisboa
13 Laboratório de Metacognição e Neurociência - Aprender a Aprender (LaMAA)
in collaboration with the programme After School from Instituto Superior Técnico - Session 5
CCU Public: Students from different high schools in the Great Lisbon area

December
11 Talk “Brain Machine-Interfaces and learning dynamics: controlling external devices with brain activity”
Escola de Ciências Sociais, Universidade de Évora Public: Undergraduate and Master’s students
Thanks to the CR Community for supporting the realisation of this publication, including the contribution of photos, materials and information.

Get in touch
- research.fchampalimaud.org
- Instagram.com/
 champalimaudresearch
- Facebook.com/
 ChampalimaudResearch

Visit us
Champalimaud Centre for the Unknown.
Av. Brasília. 1400-038 Lisbon,
Portugal